Artificial Intelligence
Index Report 2025

eeeeeeeeeeee
AT |Fll/A\|| fumrcertee



| ' Artificial Intelligence
HI Index Report 2025

Introduction to the
Al Index Report 2025

Welcome to the eighth edition of the Al Index report. The 2025 Index is our most comprehensive to date and arrives at an
important moment, as Al’s influence across society, the economy, and global governance continues to intensify. New in
this year’s report are in-depth analyses of the evolving landscape of Al hardware, novel estimates of inference costs, and
new analyses of Al publication and patenting trends. We also introduce fresh data on corporate adoption of responsible Al
practices, along with expanded coverage of Al’s growing role in science and medicine.

Since its founding in 2017 as an offshoot of the One Hundred Year Study of Artificial Intelligence, the Al Index has been

committed to equipping policymakers, journalists, executives, researchers, and the public with accurate, rigorously validated,
and globally sourced data. Our mission has always been to help these stakeholders make better-informed decisions about the
development and deployment of Al. In a world where Al is discussed everywhere—from boardrooms to kitchen tables—this

mission has never been more essential.

The Al Index continues to lead in tracking and interpreting the most critical trends shaping the field—from the shifting
geopolitical landscape and the rapid evolution of underlying technologies, to Al’s expanding role in business, policymaking,
and public life. Longitudinal tracking remains at the heart of our mission. In a domain advancing at breakneck speed, the Index
provides essential context—helping us understand where Al stands today, how it got here, and where it may be headed next.

Recognized globally as one of the most authoritative resources on artificial intelligence, the Al Index has been cited in major
media outlets such as The New York Times, Bloomberg, and The Guardian; referenced in hundreds of academic papers;
and used by policymakers and government agencies around the world. We have briefed companies like Accenture, IBM,
Wells Fargo, and Fidelity on the state of Al, and we continue to serve as an independent source of insights for the global Al
ecosystem.


https://ai100.stanford.edu/
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Message From the Co-directors

As Al continues to reshape our lives, the corporate world, and public discourse, the Al Index continues to track its progress—
offering an independent, data-driven perspective on Al’'s development, adoption, and impact, across time and geography.

What a year 2024 has been for Al. The recognition of Al’s role in advancing humanity’s knowledge is reflected in Nobel prizes in
physics and chemistry, and the Turing award for foundational work in reinforcement learning. The once-formidable Turing Test
is no longer considered an ambitious goal, having been surpassed by today’s sophisticated systems. Meanwhile, Al adoption has
accelerated at an unprecedented rate, as millions of people are now using Al on a regular basis both for their professional work
and leisure activities. As high-performing, low-cost, and openly available models proliferate, Al’s accessibility and impact are set
to expand even further.

After a brief slowdown, corporate investment in Al rebounded. The number of newly funded generative Al startups nearly
tripled, and after years of sluggish uptake, business adoption accelerated significantly in 2024. Al has moved from the margins
to become a central driver of business value.

Governments, too, are ramping up their involvement. Policymakers are no longer just debating Al—they’re investing in it. Several
countries launched billion-dollar national Al infrastructure initiatives, including major efforts to expand energy capacity to
support Al development. Global coordination is increasing, even as local initiatives take shape.

Yet trust remains a major challenge. Fewer people believe Al companies will safeguard their data, and concerns about fairness
and bias persist. Misinformation continues to pose risks, particularly in elections and the proliferation of deepfakes. In response,
governments are advancing new regulatory frameworks aimed at promoting transparency, accountability, and fairness. Public
attitudes are also shifting. While skepticism remains, a global survey in 2024 showed a notable rise in optimism about Al’s
potential to deliver broad societal benefits.

Al is no longer just a story of what’s possible—it’s a story of what’s happening now and how we are collectively shaping the

future of humanity. Explore this year’s Al Index report and see for yourself.

Yolanda Gil and Raymond Perrault
Co-directors, Al Index Report
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Top Takeaways

1. Al performance on demanding benchmarks continues to improve. In 2023, researchers introduced new
benchmarks—MMMU, GPQA, and SWE-bench—to test the limits of advanced Al systems. Just a year later, performance sharply
increased: scores rose by 18.8, 48.9, and 67.3 percentage points on MMMU, GPQA, and SWE-bench, respectively. Beyond
benchmarks, Al systems made major strides in generating high-quality video, and in some settings, language model agents even
outperformed humans in programming tasks with limited time budgets.

2. Al is increasingly embedded in everyday life. From healthcare to transportation, Al is rapidly moving from the lab
to daily life. In 2023, the FDA approved 223 Al-enabled medical devices, up from just six in 2015. On the roads, self-driving cars
are no longer experimental: Waymo, one of the largest U.S. operators, provides over 150,000 autonomous rides each week, while
Baidu’s affordable Apollo Go robotaxi fleet now serves numerous cities across China.

3. Business is all in on Al, fueling record investment and usage, as research continues to show strong
productivity impacts. In 2024, U.S. private Al investment grew to $109.1 billion—nearly 12 times China’s $9.3 billion and
24 times the U.K’s $4.5 billion. Generative Al saw particularly strong momentum, attracting $33.9 billion globally in private
investment—an 18.7% increase from 2023. Al business usage is also accelerating: 78% of organizations reported using Al in
2024, up from 55% the year before. Meanwhile, a growing body of research confirms that Al boosts productivity and, in most
cases, helps narrow skill gaps across the workforce.

4. The U.S. still leads in producing top Al models—but China is closing the performance gap. In 2024, U.S.-
based institutions produced 40 notable Al models, compared to China’s 15 and Europe’s three. While the U.S. maintains its lead
in quantity, Chinese models have rapidly closed the quality gap: performance differences on major benchmarks such as MMLU
and HumanEval shrank from double digits in 2023 to near parity in 2024. China continues to lead in Al publications and patents.
Model development is increasingly global, with notable launches from the Middle East, Latin America, and Southeast Asia.

5. The responsible Al ecosystem evolves—unevenly. Al-related incidents are rising sharply, yet standardized RAI
evaluations remain rare among major industrial model developers. However, new benchmarks like HELM Safety, AIR-Bench,
and FACTS offer promising tools for assessing factuality and safety. Among companies, a gap persists between recognizing RAI
risks and taking meaningful action. In contrast, governments are showing increased urgency: In 2024, global cooperation on Al
governance intensified, with organizations including the OECD, EU, U.N., and African Union releasing frameworks focused on
transparency, trustworthiness, and other core responsible Al principles.
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Top Takeaways (cont’d)

6. Global Al optimism is rising—but deep regional divides remain. In countries like China (83%), Indonesia (80%),
and Thailand (77%), strong majorities see Al products and services as more beneficial than harmful. In contrast, optimism remains
far lower in places like Canada (40%), the United States (39%), and the Netherlands (36%). Still, sentiment is shifting: Since 2022,
optimism has grown significantly in several previously skeptical countries, including Germany (+10%), France (+10%), Canada
(+8%), Great Britain (+8%), and the United States (+4%).

7. Al becomes more efficient, affordable, and accessible. Driven by increasingly capable small models, the inference
cost for a system performing at the level of GPT-3.5 dropped over 280-fold between November 2022 and October 2024. At
the hardware level, costs have declined by 30% annually, while energy efficiency has improved by 40% each year. Open-weight
models are closing the gap with closed models, reducing the performance difference from 8% to just 1.7% on some benchmarks
in a single year. Together, these trends are rapidly lowering the barriers to advanced Al.

8. Governments are stepping up on Al—with regulation and investment. In 2024, U.S. federal agencies introduced
59 Al-related regulations—more than double the number in 2023—and issued by twice as many agencies. Globally, legislative
mentions of Al rose 21.3% across 75 countries since 2023, marking a ninefold increase since 2016. Alongside growing attention,
governments are investing at scale: Canada pledged $2.4 billion, China launched a $47.5 billion semiconductor fund, France
committed €109 billion, India pledged $1.25 billion, and Saudi Arabia’s Project Transcendence represents a $100 billion initiative.

9. Al and computer science education is expanding—but gaps in access and readiness persist. Two-thirds
of countries now offer or plan to offer K-12 CS education—twice as many as in 2019—with Africa and Latin America making
the most progress. In the U.S., the number of graduates with bachelor’s degrees in computing has increased 22% over the last
10 years. Yet access remains limited in many African countries due to basic infrastructure gaps like electricity. In the U.S., 81% of
K—12 CS teachers say Al should be part of foundational CS education, but less than half feel equipped to teach it.

10. Industry is racing ahead in Al—but the frontier is tightening. Nearly 90% of notable Al models in 2024 came
from industry, up from 60% in 2023, while academia remains the top source of highly cited research. Model scale continues to
grow rapidly—training compute doubles every five months, datasets every eight, and power use annually. Yet performance gaps
are shrinking: the Elo skill score difference between the top and 10th-ranked models fell from 11.9% to 5.4% in a year, and the top
two are now separated by just 0.7%. The frontier is increasingly competitive—and increasingly crowded.
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Top Takeaways (cont’d)

11. Al earns top honors for its impact on science. Al’s growing importance is reflected in major scientific awards:
Two Nobel Prizes recognized work that led to deep learning (physics) and to its application to protein folding (chemistry),
while the Turing Award honored groundbreaking contributions to reinforcement learning.

12. Complex reasoning remains a challenge. Al models excel at tasks like International Mathematical Olympiad
problems but still struggle with complex reasoning benchmarks like PlanBench. They often fail to reliably solve logic tasks even
when provably correct solutions exist, limiting their effectiveness in high-stakes settings where precision is critical.
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How to Cite This Report

Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil, Vanessa Parli, Njenga Kariuki, Emily Capstick, Anka Reuel, Erik
Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald,
Toby Walsh, Armin Hamrah, Lapo Santarlasci, Julia Betts Lotufo, Alexandra Rome, Andrew Shi, Sukrut Oak. “The Al Index 2025
Annual Report,” Al Index Steering Committee, Institute for Human-Centered Al, Stanford University, Stanford, CA, April 2025.
https://doi.org/10.48550/arXiv.2504.07139

The Al Index 2025 Annual Report by Stanford University is licensed under Attribution-NoDerivatives 4.0 International.

Public Data and Tools

The Al Index 2025 Report is supplemented by raw data and an interactive tool. We invite each reader to use the data and the
tool in a way most relevant to their work and interests.
e Raw data and charts: The public data and high-resolution images of all the charts in the report are available on

Google Drive.
e Global Al Vibrancy Tool: Compare the Al ecosystems of over 30 countries. The Global Al Vibrancy tool will be

updated in the summer of 2025.

Al Index and Stanford HAI

The Al Index is an independent initiative at the Stanford Institute for Human-Centered Artificial Intelligence (HAI).

Artificial Stanford University
Intelligence Human-Centered
HI Index Artificial Intelligence

The Al Index was conceived within the One Hundred Year Study on Artificial Intelligence (A[100).

The Al Index welcomes feedback and new ideas for next year. Contact us at nmaslej@stanford.edu.

The Al Index acknowledges that while authored by a team of human researchers, its writing process was aided by Al tools.
Specifically, the authors used ChatGPT and Claude to help tighten and copy edit initial drafts. The workflow involved authors

writing the original copy and utilizing Al tools as part of the editing process.


https://ai100.stanford.edu/
mailto:nmaslej%40stanford.edu?subject=
https://doi.org/10.48550/arXiv.2504.07139
https://creativecommons.org/licenses/by-nd/4.0/?ref=chooser-v1
https://drive.google.com/drive/folders/1AxxxL9-AsaeMdDKtTNHCR1KqEJTsHCod
https://hai.stanford.edu/ai-index/global-vibrancy-tool
http://hai.stanford.edu
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Report Highlights

CHAPTER 1:
Research and Development

1. Industry continues to make significant investments in Al and leads in notable Al model development,
while academia leads in highly cited research. Industry’s lead in notable model development, highlighted in the two
previous Al Index reports, has only grown more pronounced, with nearly 90% of notable models in 2024 (compared to 60%
in 2023) originating from industry. Academia has remained the single leading institutional producer of highly cited (top 100)
publications over the past three years.

2. Chinaleads in Al research publication totals, while the United States leads in highly influential research.
In 2023, China produced more Al publications (23.2%) and citations (22.6%) than any other country. Over the past three years,
U.S. institutions have contributed the most top-100-cited Al publications.

3. Al publication totals continue to grow and increasingly dominate computer science. Between 2013 and
2023, the total number of Al publications in venues related to computer science and other scientific disciplines nearly tripled,
increasing from approximately 102,000 to over 242,000. Proportionally, Al’s share of computer science publications has risen
from 21.6% in 2013 to 41.8% in 2023.

4. The United States continues to be the leading source of notable Al models. In 2024, U.S.-based institutions
produced 40 notable Al models, significantly surpassing China’s 15 and Europe’s combined total of three. In the past decade,
more notable machine learning models have originated from the United States than any other country.

5. Al models get increasingly bigger, more computationally demanding, and more energy intensive.
New research finds that the training compute for notable Al models doubles approximately every five months, dataset sizes
for training LLMs every eight months, and the power required for training annually. Large-scale industry investment continues
to drive model scaling and performance gains.

6. Al models become increasingly cheaper to use. The cost of querying an Al model that scores the equivalent of
GPT-3.5 (64.8) on MMLU, a popular benchmark for assessing language model performance, dropped from $20.00 per million
tokens in November 2022 to just $0.07 per million tokens by October 2024 (Gemini-1.5-Flash-8B)—a more than 280-fold
reduction in approximately 18 months. Depending on the task, LLM inference prices have fallen anywhere from 9 to 900 times
per year.
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Report Highlights

CHAPTER 1:
Research and Development (cont’d)

7. Al patenting is on the rise. Between 2010 and 2023, the number of Al patents has grown steadily and significantly,
ballooning from 3,833 to 122,511. In just the last year, the number of Al patents has risen 29.6%. As of 2023, China leads in total
Al patents, accounting for 69.7% of all grants, while South Korea and Luxembourg stand out as top Al patent producers on a
per capita basis.

8. Al hardware gets faster, cheaper, and more energy efficient. New research suggests that machine learning
hardware performance, measured in 16-bit floating-point operations, has grown 43% annually, doubling every 1.9 years. Price
performance has improved, with costs dropping 30% per year, while energy efficiency has increased by 40% annually.

9. Carbon emissions from Al training are steadily increasing. Training early Al models, such as AlexNet (2012), had
modest amounts of carbon emissions at 0.01 tons. More recent models have significantly higher emissions for training: GPT-3
(2020) at 588 tons, GPT-4 (2023) at 5,184 tons, and Llama 3.1 405B (2024) at 8,930 tons. For perspective, the average American
emits 18 tons of carbon per year.

CHAPTER 2:
Technical Performance

1. Al masters new benchmarks faster than ever. In 2023, Al researchers introduced several challenging new
benchmarks, including MMMU, GPQA, and SWE-bench, aimed at testing the limits of increasingly capable Al systems. By 2024,
Al performance on these benchmarks saw remarkable improvements, with gains of 18.8 and 48.9 percentage points on MMMU
and GPQA, respectively. On SWE-bench, Al systems could solve just 4.4% of coding problems in 2023—a figure that jumped
to 71.7% in 2024.

2. Open-weight models catch up. Last year’s Al Index revealed that leading open-weight models lagged significantly
behind their closed-weight counterparts. By 2024, this gap had nearly disappeared. In early January 2024, the leading closed-
weight model outperformed the top open-weight model by 8.0% on the Chatbot Arena Leaderboard. By February 2025, this gap
had narrowed to 1.7%.
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CHAPTER 2:
Technical Performance (cont’d)

3. The gap closes between Chinese and U.S. models. In 2023, leading American models significantly outperformed
their Chinese counterparts—a trend that no longer holds. At the end of 2023, performance gaps on benchmarks such as MMLU,
MMMU, MATH, and HumanEval were 17.5, 13.5, 24.3, and 31.6 percentage points, respectively. By the end of 2024, these
margins had narrowed substantially to 0.3, 8.1, 1.6, and 3.7 percentage points.

4. Al model performance converges at the frontier. According to last year’s Al Index, the Elo score difference
between the top and 10th-ranked model on the Chatbot Arena Leaderboard was 11.9%. By early 2025, this gap had narrowed to
5.4%. Likewise, the difference between the top two models shrank from 4.9% in 2023 to just 0.7% in 2024. The Al landscape is
becoming increasingly competitive, with high-quality models now available from a growing number of developers.

5. New reasoning paradigms like test-time compute improve model performance. In 2024, OpenAl
introduced models like o1 and 03 that are designed to iteratively reason through their outputs. This test-time compute
approach dramatically improved performance, with o1 scoring 74.4% on an International Mathematical Olympiad qualifying
exam, compared to GPT-40’s 9.3%. However, this enhanced reasoning comes at a cost: o1is nearly six times more expensive
and 30 times slower than GPT-4o.

6. More challenging benchmarks are continually being proposed. The saturation of traditional Al benchmarks like
MMLU, GSM8K, and HumanEval, coupled with improved performance on newer, more challenging benchmarks such as MMMU
and GPQA, has pushed researchers to explore additional evaluation methods for leading Al systems. Notable among these are
Humanity’s Last Exam, a rigorous academic test where the top system scores just 8.80%; FrontierMath, a complex mathematics
benchmark where Al systems solve only 2% of problems; and BigCodeBench, a coding benchmark where Al systems achieve a
35.5% success rate—well below the human standard of 97%.

7. High-quality Al video generators demonstrate significant improvement. In 2024, several advanced Al models
capable of generating high-quality videos from text inputs were launched. Notable releases include OpenAl’'s SORA, Stable
Video Diffusion 3D and 4D, Meta’s Movie Gen, and Google DeepMind’s Veo 2. These models produce videos of significantly
higher quality compared to those from 2023.
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CHAPTER 2:
Technical Performance (cont’d)

8. Smaller models drive stronger performance. In 2022, the smallest model registering a score higher than 60% on
MMLU was PaLM, with 540 billion parameters. By 2024, Microsoft’s Phi-3-mini, with just 3.8 billion parameters, achieved the
same threshold—the equivalent of a 142-fold reduction in two years.

9. Complex reasoning remains a problem. Even though the addition of mechanisms such as chain-of-thought
reasoning has significantly improved the performance of LLMs, these systems still cannot reliably solve problems for which
provably correct solutions can be found using logical reasoning, such as arithmetic and planning, especially on instances larger
than those they were trained on. This has a significant impact on the trustworthiness of these systems and their suitability in
high-risk applications.

10. Al agents show early promise. The launch of RE-Bench in 2024 introduced a rigorous benchmark for evaluating
complex tasks for Al agents. In short time-horizon settings (two-hour budget), top Al systems score four times higher than
human experts, but as the time budget increases, human performance surpasses Al—outscoring it two to one at 32 hours.
Al agents already match human expertise in select tasks, such as writing Triton kernels, while delivering results faster and at
lower costs.

CHAPTER 3:
Responsible Al

1. Evaluating Al systems with responsible Al (RAI) criteria is still uncommon, but new benchmarks are
beginning to emerge. Last year’s Al Index highlighted the lack of standardized RAI benchmarks for LLMs. While this issue
persists, new benchmarks such as HELM Safety and AIR-Bench help to fill this gap.

2. The number of Al incident reports continues to increase. According to the Al Incidents Database, the number of
reported Al-related incidents rose to 233 in 2024—a record high and a 56.4% increase over 2023.
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Report Highlights

CHAPTER 3:
Responsible Al (cont’d)

3. Organizations acknowledge RAI risks, but mitigation efforts lag. A McKinsey survey on organizations’ RAI
engagement shows that while many identify key RAI risks, not all are taking active steps to address them. Risks including
inaccuracy, regulatory compliance, and cybersecurity were top of mind for leaders with only 64%, 63%, and 60% of respondents,
respectively, citing them as concerns.

4. Across the globe, policymakers demonstrate a significant interest in RAL. In 2024, global cooperation on Al
governance intensified, with a focus on articulating agreed-upon principles for responsible Al. Several major organizations—
including the OECD, European Union, United Nations, and African Union—published frameworks to articulate key RAI concerns
such as transparency and explainability, and trustworthiness.

5. The data commons is rapidly shrinking. Al models rely on massive amounts of publicly available web data for training.
A recent study found that data use restrictions increased significantly from 2023 to 2024, as many websites implemented new
protocols to curb data scraping for Al training. In actively maintained domains in the C4 common crawl dataset, the proportion
of restricted tokens jumped from 5-7% to 20-33%. This decline has consequences for data diversity, model alignment, and
scalability, and may also lead to new approaches to learning with data constraints.

6. Foundation model research transparency improves, yet more work remains. The updated Foundation
Model Transparency Index—a project tracking transparency in the foundation model ecosystem—revealed that the average
transparency score among major model developers increased from 37% in October 2023 to 58% in May 2024. While these gains
are promising, there is still considerable room for improvement.

7. Better benchmarks for factuality and truthfulness. Earlier benchmarks like HaluEval and TruthfulQA, aimed at
evaluating the factuality and truthfulness of Al models, have failed to gain widespread adoption within the Al community. In

response, newer and more comprehensive evaluations have emerged, such as the updated Hughes Hallucination Evaluation
Model leaderboard, FACTS, and SimpleQA.

8. Al-related election misinformation spread globally, but its impact remains unclear. In 2024, numerous
examples of Al-related election misinformation emerged in more than a dozen countries and across over 10 social media
platforms, including during the U.S. presidential election. However, questions remain about the measurable impacts of this
problem, with many expecting misinformation campaigns to have affected elections more profoundly than they did.
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CHAPTER 3:
Responsible Al (cont’d)

9. LLMs trained to be explicitly unbiased continue to demonstrate implicit bias. Many advanced LLMs—
including GPT-4 and Claude 3 Sonnet—were designed with measures to curb explicit biases, but they continue to exhibit
implicit ones. The models disproportionately associate negative terms with Black individuals, more often associate women with
humanities instead of STEM fields, and favor men for leadership roles, reinforcing racial and gender biases in decision making.
Although bias metrics have improved on standard benchmarks, Al model bias remains a pervasive issue.

10. RAI gains attention from academic researchers. The number of RAI papers accepted at leading Al conferences
increased by 28.8%, from 992 in 2023 to 1,278 in 2024, continuing a steady annual rise since 2019. This upward trend highlights
the growing importance of RAI within the Al research community.

CHAPTER 4:
Economy

1. Global private Al investment hits record high with 26% growth. Corporate Al investment reached $252.3 billion
in 2024, with private investment climbing 44.5% and mergers and acquisitions up 12.1% from the previous year. The sector has
experienced dramatic expansion over the past decade, with total investment growing more than thirteenfold since 2014.

2. Generative Al funding soars. Private investment in generative Al reached $33.9 billion in 2024, up 18.7% from 2023 and
over 8.5 times higher than 2022 levels. The sector now represents more than 20% of all Al-related private investment.

3. The U.S. widens its lead in global Al private investment. U.S. private Al investment hit $109.1 billion in 2024, nearly
12 times higher than China’s $9.3 billion and 24 times the U.K’s $4.5 billion. The gap is even more pronounced in generative Al,
where U.S. investment exceeded the combined total of China and the European Union plus the U.K. by $25.4 billion, expanding
on its $21.8 billion gap in 2023.

4. Use of Al climbs to unprecedented levels. In 2024, the proportion of survey respondents reporting Al use by their
organizations jumped to 78% from 55% in 2023. Similarly, the number of respondents who reported using generative Al in at least
one business function more than doubled—from 33% in 2023 to 71% last year.
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CHAPTER 4:
Economy (cont’d)

5. Al is beginning to deliver financial impact across business functions, but most companies are early in
their journeys. Most companies that report financial impacts from using Al within a business function estimate the benefits
as being at low levels. 49% of respondents whose organizations use Al in service operations report cost savings, followed by
supply chain management (43%) and software engineering (41%), but most of them report cost savings of less than 10%. With
regard to revenue, 71% of respondents using Al in marketing and sales report revenue gains, 63% in supply chain management,
and 57% in service operations, but the most common level of revenue increases is less than 5%.

6. Use of Al shows dramatic shifts by region, with Greater China gaining ground. While North America
maintains its leadership in organizations’ use of Al, Greater China demonstrated one of the most significant year-over-year
growth rates, with a 27 percentage point increase in organizational Al use. Europe followed with a 23 percentage point increase,
suggesting a rapidly evolving global Al landscape and intensifying international competition in Al implementation.

7. China’s dominance in industrial robotics continues despite slight moderation. In 2023, China installed
276,300 industrial robots, six times more than Japan and 7.3 times more than the United States. Since surpassing Japan in
2013, when China accounted for 20.8% of global installations, its share has risen to 51.1%. While China continues to install
more robots than the rest of the world combined, this margin narrowed slightly in 2023, marking a modest moderation in its
dramatic expansion.

8. Collaborative and interactive robot installations become more common. In 2017, collaborative robots
represented a mere 2.8% of all new industrial robot installations, a figure that climbed to 10.5% by 2023. Similarly, 2023 saw a
rise in service robot installations across all application categories except medical robotics. This trend indicates not just an overall
increase in robot installations but also a growing emphasis on deploying robots for human-facing roles.

9. Al is driving significant shifts in energy sources, attracting interest in nuclear energy. Microsoft announced
a $1.6 billion deal to revive the Three Mile Island nuclear reactor to power Al, while Google and Amazon have also secured
nuclear energy agreements to support Al operations.

10. Al boosts productivity and bridges skill gaps. Last year’s Al Index was among the first reports to highlight research
showing Al’s positive impact on productivity. This year, additional studies reinforced those findings, confirming that Al boosts
productivity and, in most cases, helps narrow the gap between low- and high-skilled workers.
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CHAPTER 5:
Science and Medicine

1. Bigger and better protein sequencing models emerge. In 2024, several large-scale, high-performance protein
sequencing models, including ESM3 and AlphaFold 3, were launched. Over time, these models have grown significantly in size,
leading to continuous improvements in protein prediction accuracy.

2. Al continues to drive rapid advances in scientific discovery. Al’s role in scientific progress continues to expand.
While 2022 and 2023 marked the early stages of Al-driven breakthroughs, 2024 brought even greater advancements, including
Aviary, which trains LLM agents for biological tasks, and FireSat, which significantly enhances wildfire prediction.

3. The clinical knowledge of leading LLMs continues to improve. OpenAl’s recently released o1 set a new state-
of-the-art 96.0% on the MedQA benchmark—a 5.8 percentage point gain over the best score posted in 2023. Since late
2022, performance has improved 28.4 percentage points. MedQA, a key benchmark for assessing clinical knowledge, may be
approaching saturation, signaling the need for more challenging evaluations.

4. Al outperforms doctors on key clinical tasks. A new study found that GPT-4 alone outperformed doctors—both
with and without Al—in diagnosing complex clinical cases. Other recent studies show Al surpassing doctors in cancer detection
and identifying high-mortality-risk patients. However, some early research suggests that Al-doctor collaboration yields the best
results, making it a fruitful area of further research.

5. The number of FDA-approved, Al-enabled medical devices skyrockets. The FDA authorized its first Al-enabled
medical device in 1995. By 2015, only six such devices had been approved, but the number spiked to 223 by 2023.

6. Synthetic data shows significant promise in medicine. Studies released in 2024 suggest that Al-generated
synthetic data can help models better identify social determinants of health, enhance privacy-preserving clinical risk prediction,
and facilitate the discovery of new drug compounds.

7. Medical Al ethics publications are increasing year over year. The number of publications on ethics in medical Al
nearly quadrupled from 2020 to 2024, rising from 288 in 2020 to 1,031 in 2024.
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CHAPTER 5:
Science and Medicine (cont’d)

8. Foundation models come to medicine. In 2024, a wave of large-scale medical foundation models were released,
ranging from general-purpose multimodal models like Med-Gemini to specialized models such as EchoCLIP for echocardiology,
VisionFM for ophthalmology, and ChexAgent for radiology.

9. Publicly available protein databases grow in size. Since 2021, the number of entries in major public protein science
databases has grown significantly, including UniProt (31%), PDB (23%), and AlphaFold (585%). This expansion has important
implications for scientific discovery.

10. Al research recognized by two Nobel Prizes. In 2024, Al-driven research received top honors, with two Nobel
Prizes awarded for Al-related breakthroughs. Google DeepMind’s Demis Hassabis and John Jumper won the Nobel Prize in
Chemistry for their pioneering work on protein folding with AlphaFold. Meanwhile, John Hopfield and Geoffrey Hinton received
the Nobel Prize in Physics for their foundational contributions to neural networks.

CHAPTER 6:
Policy and Governance

1. U.S. states are leading the way on Al legislation amid slow progress at the federal level. In 2016, only one
state-level Al-related law was passed, increasing to 49 by 2023. In the past year alone, that number more than doubled to 131.
While proposed Al bills at the federal level have also increased, the number passed remains low.

2. Governments across the world invest in Al infrastructure. Canada announced a $2.4 billion Al infrastructure
package, while China launched a $47.5 billion fund to boost semiconductor production. France committed $117 billion to Al
infrastructure, India pledged $1.25 billion, and Saudi Arabia’s Project Transcendence includes a $100 billion investment in Al

3. Across the world, mentions of Al in legislative proceedings keep rising. Across 75 countries, Al mentions
in legislative proceedings increased by 21.3% in 2024, rising to 1,889 from 1,557 in 2023. Since 2016, the total number of Al
mentions has grown more than ninefold.
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CHAPTER 6:
Policy and Governance (cont’d)

4. Al safety institutes expand and coordinate across the globe. In 2024, countries worldwide launched international
Al safety institutes. The first emerged in November 2023 in the U.S. and the U.K. following the inaugural Al Safety Summit. At
the Al Seoul Summit in May 2024, additional institutes were pledged in Japan, France, Germany, Italy, Singapore, South Korea,
Australia, Canada, and the European Union.

5. The number of U.S. Al-related federal regulations skyrockets. In 2024, 59 Al-related regulations were
introduced—more than double the 25 recorded in 2023. These regulations came from 42 unique agencies, twice the 21 agencies
that issued them in 2023.

6. U.S. states expand deepfake regulations. Before 2024, only five states—California, Michigan, Washington, Texas,
and Minnesota—had enacted laws regulating deepfakes in elections. In 2024, 15 more states, including Oregon, New Mexico,
and New York, introduced similar measures. Additionally, by 2024, 24 states had passed regulations targeting deepfakes.

CHAPTER 7:
Education

1. Access to and enrollment in high school computer science (CS) courses in the U.S. has increased slightly
from the previous school year, but gaps remain. Student participation varies by state, race and ethnicity, school size,
geography, income, gender, and disability.

2. CS teachers in the U.S. want to teach Al but do not feel equipped to do so. Despite the 81% of CS teachers
who agree that using Al and learning about Al should be included in a foundational CS learning experience, fewer than half of
high school CS teachers feel equipped to teach Al.

3. Two-thirds of countries worldwide offer or plan to offer K-12 CS education. This fraction has doubled since
2019, with African and Latin American countries progressing the most. However, students in African countries have the least
amount of access to CS education due to schools’ lack of electricity.
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CHAPTER 7:
Education (cont’d)

4. Graduates who earned their master’s degree in Al in the U.S. nearly doubled between 2022 and 2023.
While increased attention on Al will be slower to emerge in the number of bachelor’s and PhD degrees, the surge in master’s
degrees could indicate a developing trend for all degree levels.

5. The U.S. continues to be a global leader in producing information, technology, and communications
(ICT) graduates at all levels. Spain, Brazil, and the United Kingdom follow the U.S. as top producers at various levels, while
Turkey boasts the best gender parity.

CHAPTER 8:
Public Opinion

1. The world grows cautiously optimistic about Al products and services. Among the 26 nations surveyed by
Ipsos in both 2022 and 2024, 18 saw an increase in the proportion of people who believe Al products and services offer more
benefits than drawbacks. Globally, the share of individuals who see Al products and services as more beneficial than harmful has
risen from 52% in 2022 to 55% in 2024.

2. The expectation and acknowledgment of Al’s impact on daily life is rising. Around the world, two thirds
of people now believe that Al-powered products and services will significantly impact daily life within the next three to five
years—an increase of 6 percentage points since 2022. Every country except Malaysia, Poland, and India saw an increase in this
perception since 2022, with the largest jumps in Canada (17%) and Germany (15%).

3. Skepticism about the ethical conduct of Al companies is growing, while trust in the fairness of Al is
declining. Globally, confidence that Al companies protect personal data fell from 50% in 2023 to 47% in 2024. Likewise, fewer
people today believe that Al systems are unbiased and free from discrimination compared to last year.

4. Regional differences persist regarding Al optimism. First reported in the 2023 Al Index, significant regional
differences in Al optimism endure. A large majority of people believe Al-powered products and services offer more benefits than
drawbacks in countries like China (83%), Indonesia (80%), and Thailand (77%), while only a minority share this view in Canada
(40%), the United States (39%), and the Netherlands (36%).
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Public Opinion (cont’d)

5. People in the United States remain distrustful of self-driving cars. A recent American Automobile Association
survey found that 61% of people in the U.S. fear self-driving cars, and only 13% trust them. Although the percentage who expressed
fear has declined from its 2023 peak of 68%, it remains higher than in 2021 (54%).

6. There is broad support for Al regulation among local U.S. policymakers. In 2023, 73.7% of local U.S.
policymakers—spanning township, municipal, and county levels—agreed that Al should be regulated, up significantly from
55.7% in 2022. Support was stronger among Democrats (79.2%) than Republicans (55.5%), though both registered notable
increases over 2022.

7. Al optimism registers sharp increase among countries that previously showed the most skepticism.
Globally, optimism about Al products and services has increased, with the sharpest gains in countries that were previously the
most skeptical. In 2022, Great Britain (38%), Germany (37%), the United States (35%), Canada (32%), and France (31%) were
among the least likely to view Al as having more benefits than drawbacks. Since then, optimism has grown in these countries by
8%, 10%, 4%, 8%, and 10%, respectively.

8. Workers expect Al to reshape jobs, but fear of replacement remains lower. Globally, 60% of respondents
agree that Al will change how individuals do their job in the next five years. However, a smaller subset of respondents, 36%,
believe that Al will replace their jobs in the next five years.

9. Sharp divides exist among local U.S. policymakers on Al policy priorities. While local U.S. policymakers
broadly support Al regulation, their priorities vary. The strongest backing is for stricter data privacy rules (80.4%), retraining for
the unemployed (76.2%), and Al deployment regulations (72.5%). However, support drops significantly for a law enforcement
facial recognition ban (34.2%), wage subsidies for wage declines (32.9%), and universal basic income (24.6%).

10. Al is seen as a time saver and entertainment booster, but doubts remain on its economic impact. Global
perspectives on Al’s impact vary. While 55% believe it will save time, and 51% expect it will offer better entertainment options,
fewer are confident in its health or economic benefits. Only 38% think Al will improve health, whilst 36% think Al will improve the
national economy, 31% see a positive impact on the job market, and 37% believe it will enhance their own jobs.
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CHAPTER 1:
Research and Development

Overview

This chapter explores trends in Al research and development, beginning with an
analysis of Al publications, patents, and notable Al systems. These topics are examined
through the lens of the countries, organizations, and sectors producing them. The
chapter also covers Al model training costs, Al conference attendance, and open-
source Al software. New additions this year include profiles of the evolving Al hardware
ecosystem, an assessment of Al training’s energy requirements and environmental
impact, and a temporal analysis of model inference costs.
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Chapter Highlights

1. Industry continues to make significant investments in Al and leads in notable Al model development,
while academia leads in highly cited research. Industry’s lead in notable model development, highlighted in the two
previous Al Index reports, has only grown more pronounced, with nearly 90% of notable models in 2024 (compared to 60%
in 2023) originating from industry. Academia has remained the single leading institutional producer of highly cited (top 100)
publications over the past three years.

2. Chinaleadsin Al research publication totals, while the United States leads in highly influential research.
In 2023, China produced more Al publications (23.2%) and citations (22.6%) than any other country. Over the past three years,
U.S. institutions have contributed the most top-100-cited Al publications.

3. Al publication totals continue to grow and increasingly dominate computer science. Between 2013 and
2023, the total number of Al publications in venues related to computer science and other scientific disciplines nearly tripled,
increasing from approximately 102,000 to over 242,000. Proportionally, Al’s share of computer science publications has risen
from 21.6% in 2013 to 41.8% in 2023.

4. The United States continues to be the leading source of notable Al models. In 2024, U.S.-based institutions
produced 40 notable Al models, significantly surpassing China’s 15 and Europe’s combined total of three. In the past decade,
more notable machine learning models have originated from the United States than any other country.

5. Al models get increasingly bigger, more computationally demanding, and more energy intensive.
New research finds that the training compute for notable Al models doubles approximately every five months, dataset sizes
for training LLMs every eight months, and the power required for training annually. Large-scale industry investment continues
to drive model scaling and performance gains.
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6. Al models become increasingly affordable to use. The cost of querying an Al model that scores the equivalent
of GPT-3.5 (64.8) on MMLU, a popular benchmark for assessing language model performance, dropped from $20.00 per
million tokens in November 2022 to just $0.07 per million tokens by October 2024 (Gemini-1.5-Flash-8B)—a more than 280-
fold reduction in approximately 18 months. Depending on the task, LLM inference prices have fallen anywhere from 9 to 900

times per year.

7. Al patenting is on the rise. Between 2010 and 2023, the number of Al patents has grown steadily and significantly,
ballooning from 3,833 to 122,511. In just the last year, the number of Al patents has risen 29.6%. As of 2023, China leads in total
Al patents, accounting for 69.7% of all grants, while South Korea and Luxembourg stand out as top Al patent producers on a per
capita basis.

8. Al hardware gets faster, cheaper, and more energy efficient. New research suggests that machine learning
hardware performance, measured in 16-bit floating-point operations, has grown 43% annually, doubling every 1.9 years. Price
performance has improved, with costs dropping 30% per year, while energy efficiency has increased by 40% annually.

9. Carbon emissions from Al training are steadily increasing. Training early Al models, such as AlexNet (2012), had
modest amounts of carbon emissions at 0.01 tons. More recent models have significantly higher emissions for training: GPT-3
(2020) at 588 tons, GPT-4 (2023) at 5,184 tons, and Llama 3.1 405B (2024) at 8,930 tons. For perspective, the average American
emits 18 tons of carbon per year.
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1.1 Publications

1.1 Publications

The figures below show the global count of English-language
Al publications from 2010 to 2023, categorized by affiliation
type, publication type, and region. New to this year’s report,
the Al Index includes a section analyzing trends among the
100 most-cited Al publications, which can offer insights
into particularly high-impact research. This year, the Al
Index analyzed Al publication trends using the OpenAlex
database. As a result, the numbers in this year’s report differ
slightly from those in previous editions.! Given that there is a
significant lag in the collection of publication metadata, and
that in some cases it takes until the middle of any given year
to fully capture the previous year’s publications, in this year’s

Number of Al publications in CS worldwide, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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report, the Al Index team elected to examine publication
trends only through 2023.

Overview

The following section reports on trends in the total number of
English-language Al publications.

Total Number of Al Publications

Figure 1.1.1 displays the global count of Al publications. These
are the publications with a computer science (CS) label in the
OpenAlex catalog that were classified by the Al Index as being
related to Al.2 Between 2013 and 2023, the total number of Al

242.74

2013 2014 2015 2016 2017

2018 2019 2020 2021 2022 2023

Figure 1.1.1

10OpenAlex is a fully open catalog of scholarly metadata, including scientific papers, authors, institutions, and more. The Al Index used OpenAlex as a bibliographic database and
automatically classified Al-related research using the latest version of the CSO Classifier. In previous years, the Index relied on third-party providers with different underlying data sources
and classification methods. As a result, this year’s findings differ slightly from those included in previous reports. Additionally, the Al Index applied the classifier only to papers that OpenAlex
categorized under the broad field of computer science. This approach may have led to an undercount of Al-related publications by excluding research from fields like social sciences that

employ Al methodologies but fall outside the computer science—designated classification.

2 The CSO Classifier (v3.3) is an automated text classification system designed to categorize research papers in computer science using a comprehensive ontology of 15,000 topics and
166,000 relationships, including emerging fields like GenAl, LLMs, and prompt engineering. It processes metadata (such as title and abstract) through three modules: a syntactic module for
exact topic matches, a semantic module leveraging word embeddings to infer related topics, and a post-processing module that refines results by filtering outliers and adding relevant higher-

level areas.
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1.1 Publications

publications more than doubled, rising from approximately to human-computer interaction, are now contributing to
102,000 in 2013 to more than 242,000 in 2023. The increase Al. As a result, the observed growth reflects a broader and
over the last year was a meaningful 19.7%. Many fields within increased interest in Al across the discipline.

computer science, from hardware and software engineering

Al publications in CS (% of total) worldwide, 2013-23
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.1.2
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1.1 Publications

Figure 1.1.2 shows the proportion of computer science
publications in the OpenAlex corpus classified as Al-related.
Figure 1.1.2 features the same data included in Figure 1.1.1 but
in a proportional form. The share of Al publications has grown
significantly, almost doubling from 2013 to 2023.

By Venue
Al researchers publish their work across various venues.
Figure 1.1.3 visualizes the total number of Al publications

Number of Al publications in CS by venue type, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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by venue type. In 2023, journals accounted for the largest
share of Al publications (41.8%), followed by conferences
(34.3%). Even though the total number of journal and
conference publications has increased since 2013, the share
of Al publications in journals and conferences has steadily
declined, from 52.6% and 36.4% in 2013 to 41.8% and
34.3%, respectively, in 2023. Conversely, Al publications in
repositories like arXiv have seen a growing share.
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By National Affiliation

Figure 1.1.4 visualizes Al publications over time by region.®
In 2023, East Asia and the Pacific led Al research output,
accounting for 34.5% of all Al publications, followed by
Europe and Central Asia (18.2%) and North America (10.3%).*

While Figure 1.1.4 examines the geographic distribution of
Al publications, identifying which regions produce the most
research, Figure 1.1.5 focuses on citations, measuring the share

Al publications in CS (% of total) by region, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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of total Al publication citations attributed to work originating
from each region. As of 2023, Al publications from East Asia
and the Pacific accounted for the largest share of Al article
citations at 37.1% (Figure 1.1.5). In 2017, citation shares from
East Asia and the Pacific and North America were roughly
equal, but since then, North American and European citation
shares have declined, while East Asia and the Pacific’s share
has risen sharply.
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Figure 1.1.4

3 Regions in this chapter are classified according to the World Bank analytical grouping. The Al Index determines the country affiliation of authors using the “countries” field from the
authorship data. This field lists all the countries an author is affiliated with, as retrieved from OpenAlex based on institutional affiliations. These affiliations can be explicitly stated in the paper
or inferred from the author’s most recent publications. When counting publications by country, the Al Index assigns one count to each country linked to the publication. For example, if a
paper has three authors, two affiliated with institutions in the U.S. and one in China, the publication is counted once for the U.S. and once for China.

4 A publication may have an “unknown” country affiliation when the author’s institutional affiliation is missing or incomplete. This issue arises due to various factors, including unstructured or
omitted institution names, platform functional deficiencies, group authorship practices, unstandardized affiliation labeling, document type inconsistencies, or the author’s limited publication
record. The problem as it relates to OpenAlex is addressed in this paper; however, the issue of missing institutions pertains to other bibliographic databases as well.
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1.1 Publications

Al publication citations in CS (% of total) by region, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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In 2023, China was the global leaderin Al article publications, to Europe has declined. Al publications attributed to the
accounting for 23.2% of the total, compared to 15.2% from United States remained relatively stable until 2021 but have
Europe and 9.2% from India (Figure 1.1.6).° Since 2016, China’s shown a slight decline since then.

share has steadily increased, while the proportion attributed

Al publications in CS (% of total) by select geographic areas, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.1.6°

5 For the “Europe” designation in this and other chapters of the report, the Al Index follows the list of countries defined by the United Nations Statistics Division.

6 To maintain concision, the Al Index visualized results for a select group of countries. However, full results for all countries will be available on the Al Index’s Global Vibrancy Tool, which is set
to be updated in summer 2025. For immediate access to country-specific research and development data, please contact the Al Index team.

O Table of Contents 9 Chapter 1 Preview



https://unstats.un.org/unsd/demographic-social/products/dyb/documents/dyb2021/table03.pdf

| HI Artificial Intelligence
Chapter 1: Research and Development Index Report 2025

1.1 Publications

In 2023, Chinese Al publications accounted for 22.6% of all Al citations, followed by Europe at 20.9% and the United States at
13.0% (Figure 1.1.7). As with total Al publications, the late 2010s marked a turning point when China surpassed Europe and the
U.S. as the leading source of Al publication citations.

Al publication citations in CS (% of total) by select geographic areas, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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1.1 Publications

By Sector

Academic institutions remain the primary source of Al at 84.9%, in 2023. Industry contributed 7.1% of Al publications
publications worldwide (Figure 1.1.8). In 2013, they accounted in 2023, followed by government institutions at 4.9% and
for 85.9% of all Al publications, a figure that remained high, nonprofit organizations at 1.7%.

Al publications in CS (% of total) by sector, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.1.87

7 For Figures 1.1.8 and 1.1.9, publications with unknown affiliations were excluded from the final visualization.
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1.1 Publications

Al publications emerge from various sectors in differing
proportions across geographic regions. In the United States,
a higher share of Al publications (16.5%) comes from industry

compared to China (8.0%) (Figure 1.1.9). Among major
geographic areas, China has the highest percentage of Al
publications originating from the education sector (84.5%).

Al publications in CS (% of total) by sector and select geographic areas, 2023

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.1 Publications

By Topic

Machine learning was the most prevalent research topic in (25.9%) and natural language processing (171%) (Figure
Al publications in 2023, comprising 75.7% of publications, 1.1.10). Over the past year, there has been a sharp increase in
followed by computer vision (47.2%), pattern recognition publications on generative Al.

Number of Al publications by select top topics, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.1.10°

8 The Al Index categorized papers using its own topic classifier. It is possible for a single publication to be assigned multiple topic labels.
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Top 100 Publications

While tracking total Al publications provides a broad view of
research activity, focusing on the most-cited papers offers a
perspective of the field’s most influential work. This analysis
sheds light on where some of the most groundbreaking and
influential Al research is emerging. This year, the Al Index
identified the 100 most-cited Al publications in 2021, 2022,
and 2023, using citation data from OpenAlex. This analysis
was further supplemented with insights from Google Scholar
and Semantic Scholar.® Some of the most highly cited Al
publications in 2023 included OpenAl’'s GPT-4 technical

report, Meta’s Llama 2 technical report, and Google’s PaLM-E
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technical report. It is important to note that due to citation
lag, the most-cited papers in this year’s report may change
in future editions.

By National Affiliation

Figure 1111 illustrates the geographic distribution of the top
100 most-cited Al publications by year. From 2021 to 2023,
the U.S. consistently had the highest number of top-cited
publications, with 64 in 2021, 59 in 2022, and 50 in 2023.°
In each of these years, China ranked second. Since 2021, the
U.S. share of top Al publications has gradually declined.

Number of highly cited publications in top 100 by select geographic areas, 2021-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 11.11

9 The full methodological guide can be accessed in the Appendix, along with the list of the top 100 articles.

10 A publication can have multiple authors from different countries or organizations. For example, if a paper includes authors from multiple countries, each country is credited once. As a

result, the totals in this section’s figures exceed 100.
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1.1 Publications

By Sector

Academia consistently produces the most top-cited Al dropping from 17 in 2021 and 19 in 2022 to just 7 in 2023.
publications, with 42 in 2023, 27 in 2022, and 34 in 2021 As Al research grows more competitive, many industrial Al
(Figure 1.1.12). Notably, there was a sharp decline in industry labs are publishing less frequently or disclosing fewer details
contributions, with the number of top 100 publications about their research in their publications.

Number of highly cited publications in top 100 by sector, 2021-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.1.12"

11 The “mixed” designation includes all intersector collaborations that are not industry and academia (e.g., industry and government, academia and nonprofit). Some institutions lack data
for 2021 because they did not have papers included in the top 100 that year. Since papers can have multiple authors from different institutions, the total institutional tags in Figure 1.1.12 may
exceed 100. Also, because two of the papers had authors with an unknown sectoral affiliation, the total sum of publications in Figure 1.1.12 is 98.
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1.1 Publications

By Organization

Figure 1.1.13 highlights the organizations that produced the Google led each year, but it tied with Tsinghua University in
top 100 most-cited Al publications from 2021 to 2023. Some 2023, when both contributed eight publications to the top
organizations may have empty bars on the chart if they lacked 100. In 2023, Carnegie Mellon University was the highest-
atop 100 publication in a given year. Additionally, Figure 1.1.13 ranked U.S. academic institution.

highlights only the top 10 institutions, though many others

contribute significant research.

Number of highly cited publications in top 100 by organization, 2021-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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1.2 Patents

This section examines trends over time in global

Al patents, which can reveal important insights

into the evolution of innovation, research, and

development within Al. Additionally, analyzing

Al patents can reveal how these advances are P

distributed globally. Similar to the publications 1 ° 2 ate ntS
data, there is a noticeable delay in Al patent

data availability, with 2023 being the most OverVIeW

recent year for which data is accessible. The

data in this section is sourced from patent- Figure 1.2.1 examines the global growth in granted Al patents from 2010 to
level bibliographic records in PATSTAT Global, 2023. Over the past dozen years, the number of Al patents has grown steadily
a comprehensive database provided by the and significantly, increasing from 3,833 in 2010 to 122,511 in 2023. In the last

European Patent Office (EPO).”?

year, the number of Al patents has risen 29.6%.

Number of Al patents granted worldwide, 2010-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.2.1

12 More details on the methodology behind the patent analysis in this section can be found in the Appendix.
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By National Affiliation

Figure 1.2.2 showcases the regional breakdown of granted
Al patents, as in the number of patents filed in different
regions across the world. As of 2023, the bulk of the world’s
granted Al patents (82.4%) originated from East Asia and

| I Artificial Intelligence
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the Pacific, with North America being the next largest
contributor at 14.2%. Since 2010, the gap in Al patent grants
between East Asia and the Pacific and North America has
steadily widened.

Granted Al patents (% of world total) by region, 2010-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 1.2.2%®

13 Patent standards and laws vary across countries and regions, so these charts should be interpreted with caution. More detailed country-level patent information will be released in a

subsequent edition of the Al Index’s Global Vibrancy Tool.
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1.2 Patents

Disaggregated by geographic area, the majority of the
world’s granted Al patents are from China (69.7%) and the
United States (14.2%) (Figure 1.2.3). The share of Al patents
originating from the United States has declined from a peak
of 42.8% in 2015.

| I Artificial Intelligence
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Figure 1.2.3 and Figure 1.2.4 document which countries lead
in Al patents per capita. In 2023, the country with the most
granted Al patents per 100,000 inhabitants was South Korea
(17.3), followed by Luxembourg (15.3) and China (6.1) (Figure
1.2.3). Figure 1.2.5 highlights the change in granted Al patents
per capita from 2013 to 2023. Luxembourg, China and
Sweden experienced the greatest increase in Al patenting
per capita during that time period.

Granted Al patents (% of world total) by select geographic areas, 2010-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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1.2 Patents

Granted Al patents per 100,000 inhabitants by country, 2023

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Percentage change of granted Al patents per 100,000 inhabitants by country, 2013 vs. 2023
Source: Al Index, 2025 | Chart: 2025 Al Index report
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1.3 Notable Al Models

This section explores notable Al models. Epoch Al,
an Al Index data provider, uses the term “notable
machine learning models” to designate particularly
influential models within the Al/machine learning
ecosystem. Epoch maintains a database of 900
Al models released since the 1950s, selecting
entries based on criteria such as state-of-the-art
advancements, historical significance, or high
citation rates. Since Epoch manually curates
the data, some models considered notable by
some may not be included. Analyzing these
models provides a comprehensive overview of
the machine learning landscape’s evolution, both
in recent years and over the past few decades.”
Some models may be missing from the dataset;
however, the dataset can reveal trends in relative
terms. Examples of notable Al models include
GPT-40, Claude 3.5, and AlphaGeometry.

Within this section, the Al Index explores trends
in notable models from various perspectives,
including  country  of originating
organization, gradient of model release, parameter
count, and compute usage. The analysis concludes
with an examination of machine learning training
as well as inference costs.

origin,

Number of notable Al models by select geographic

areas, 2024
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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1.3 Notable Al Models

By National Affiliation

To illustrate the evolving geopolitical landscape of Al, the Al Index shows
the country of origin of notable models. Figure 1.3.1 displays the total number
of notable Al models attributed to the location of researchers’ affiliated
institutions.”® In 2024, the United States led with 40 notable Al models,
followed by China with 15 and France with three. All major geographic
groups, including the United States, China, and Europe, reported releasing
fewer notable models in 2024 than in the previous year (Figure 1.3.2). Since
2003, the United States has produced more models than other major
countries such as the United Kingdom, China, and Canada (Figure 1.3.3).

It is difficult to pinpoint the exact cause of the decline in total model
releases, but it may stem from a combination of factors: increasingly large
training runs, the growing complexity of Al technology, and the heightened
challenge of developing new modeling approaches. Epoch Al’s curation of

Number of notable Al models by select geographic
areas, 2003-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report

(o] 5 10 15 20 25

30

Number of notable Al models

70
» 60
[
°
<]
E 50
<
Q@
<Q 40 40, United States
°
c
S 30
9]
£
S 20
z .
15, China

10

0

= o B &8 8 § £ &2 § %
& & & /& & & ¥
Figure 1.3.1" Figure 1.3.2

14 “Al system” refers to a computer program or product based on Al, such as ChatGPT. “Al model” includes a collection of parameters whose values are learned during training, such as GPT-4.

15 New and historic models are continually added to the Epoch Al database, so the total year-by-year counts of models included in this year’s Al Index might not exactly match those
published in last year’s report. The data is from a snapshot taken on March 17, 2025.

16 A machine learning model is associated with a specific country if at least one author of the paper introducing it has an affiliation with an institution based in that country. In cases where a

model’s authors come from several countries, double-counting can occur.

17 This chart highlights model releases from a select group of geographic areas. More comprehensive data on model releases by country will be available in the upcoming Al Index Global

Vibrancy Tool release.
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1.3 Notable Al Models

notable models may overlook releases from certain countries
that receive less coverage. The Al Index, in cooperation with
Epoch, is committed to improving global representation in
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the Al model ecosystem. If readers believe that models from
specific countries are missing, they are encouraged to contact
the Al Index team, which will work to address the issue.

Number of notable Al models by geographic area, 2003-24 (sum)

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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By Sector

Figure 1.3.4 illustrates the sectoral origin of notable Al releases
by the year the models were released. Epoch categorizes
models based on their source: Industry includes companies
such as Google, Meta, and OpenAl; academia covers
universities like Tsinghua, MIT, and Oxford; government
refers to state-affiliated research institutes like the UK’s Alan
Turing Institute for Al and Abu Dhabi’s Technology Innovation
Institute; and research collectives encompass nonprofit Al
research organizations such as the Allen Institute for Al and
the Fraunhofer Institute.

Figure 1.3.3

Until 2014, academia led in terms of releasing machine
learning models. Since then, industry has taken the lead.
According to Epoch Al, in 2024, industry produced 55 notable
Al models. That same year, Epoch Al identified no notable
Al models originating from academia (Figure 1.3.5).® Over
time, industry-academia collaborations have contributed to
a growing number of models. The proportion of notable Al
models originating from industry has steadily increased over
the past decade, growing to 90.2% in 2024.

18 This figure should be interpreted with caution. A count of zero academic models does not mean that no notable models were produced by academic institutions in 2023, but rather that
Epoch Al has not identified any as notable. Additionally, academic publications often take longer to gain recognition, as highly cited papers introducing significant architectures may take

years to achieve prominence.

O Table of Contents

9 Chapter 1 Preview




| I Artificial Intelligence
HI Index Report 2025

Chapter 1: Research and Development
1.3 Notable Al Models

Number of notable Al models by sector, 2003-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Notable Al models (% of total) by sector, 2003-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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By Organization

Figure 1.3.6 and Figure 1.3.7 highlight the organizations leading Google has led with 187 notable models, followed by Meta (82)
in the production of notable machine learning models in 2024 and Microsoft (39). Among academic institutions, Carnegie
and over the past decade. In 2024, the top contributors were Mellon University (25), Stanford University (25), and Tsinghua
Google (7), OpenAl (7 models), and Alibaba (6). Since 2014, University (22) have been the most prolific since 2014.

Number of notable Al models by organization, 2024
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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19 In the organizational tally figures, research published by DeepMind is classified under Google.
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Model Release

Machine learning models are released under various
access types, each with varying levels of openness and
usability. APl access models, like OpenAl’s o1, allow users
to interact with models via queries without direct access
to their underlying weights. Open weights (restricted use)
models, like DeepSeek’s-V3, provide access to their weights
but impose limitations, such as prohibiting commercial
use or redistribution. Hosted access (no API) models, like
Gemini 2.0 Pro, refer to models available through a platform
interface but without programmatic access. Open weights
(unrestricted) models, like AlphaGeometry, are fully open,
allowing free use, modification, and redistribution. Open
weights (noncommercial) models, like Mistral Large 2, share
their weights but restrict use to research or noncommercial
purposes. Lastly, unreleased models, like ESM3 98B, remain

Number of notable Al models by access type, 2014-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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proprietary, accessible only to their developers or select
partners. The unknown designation refers to models that
have unclear or undisclosed access types.

Figure 1.3.8 illustrates the different access types under which
models have been released.?® In 2024, API access was the
most common release type, with 20 of 61 models made
available this way, followed by open weights with restricted
use and unreleased models.

Figure 1.3.9 visualizes machine learning model access types
over time from a proportional perspective. In 2024, most Al
models were released via APl access (32.8%), which has seen
a steady rise since 2020.
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20 Hosted access refers to using computing resources or services (such as software, hardware, or storage) provided remotely by a third party, rather than personally owning or managing
them. Instead of running software or infrastructure locally, hosted access involves accessing these resources via the cloud or another remote service, typically over the internet. For example,
using GPUs through platforms like AWS, Google Cloud, or Microsoft Azure—rather than running them on one’s own hardware—is considered hosted access.

21 Not all models in the Epoch database are categorized by access type, so the totals in Figures 1.3.8 through 1.3.10 may not fully align with those reported elsewhere in the chapter.
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Notable Al models (% of total) by access type, 2014-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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In traditional open-source software releases, all components,
including the training code, are typically made available.
However, this is often not the case with Al technologies,
where even developers who release model weights may
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Figure 1.3.9

withhold the training code. Figure 1.3.10 categorizes notable
Al models by the openness of their code release. In 2024,
the majority—60.7%—were launched without corresponding
training code.

Number of notable Al models by training code access type, 2014-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Parameter Trends

Parameters in machine learning models are numerical
values learned during training that determine how a model
interprets input data and makes predictions. Models with
more parameters require more data to be trained, but they
can take on more tasks and typically outperform models with

fewer parameters.

Figure 1.3.11 demonstrates the parameter count of machine
learning models in the Epoch dataset, categorized by
the sector from which the models originate. Figure 1.3.12
visualizes the same data, but for a smaller selection of notable

| I Artificial Intelligence
HI Index Report 2025

models. Parameter counts have risen sharply since the early
2010s, reflecting the growing complexity of their architecture,
greater availability of data, improvements in hardware, and
proven efficacy of larger models. High-parameter models are
particularly notable in the industry sector, underscoring the
substantial financial resources available to industry to cover
the computational costs of training on vast volumes of data.
Several of the figures below use a log scale to reflect the
exponential growth in Al model parameters and compute in
recent years.

Number of parameters of notable Al models by sector, 2003-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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1.3 Notable Al Models

Number of parameters of select notable Al models by sector, 2012-24
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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As model parameter counts have increased, so has the volume
of data used to train Al systems. Figure 1.3.13 illustrates the
growth in dataset sizes used to train notable machine learning
models. The Transformer model, released in 2017 and widely
credited with sparking the large language model revolution,
was trained on approximately 2 billion tokens. By 2020,

Training dataset size of notable Al models, 2010-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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GPT-3 175B—one of the models underpinning the original

ChatGPT—was trained on an estimated 374 billion tokens.
In contrast, Meta’s flagship LLM, Llama 3.3, released in the
summer of 2024, was trained on roughly 15 trillion tokens.
According to Epoch Al, LLM training datasets double in size
approximately every eight months.

DeepSeek-V3
GPT-4
Llama 3.1-405B
100T
PaLM (540B)
;: GPT-3 175B (daviaci) °
g 1T ° g
> o ‘o ® 9
E: gnii |
. ° 4
g o® Transformer .Q'. e o °
£ 108 ° ° o Je ° 0g°
I ° @ ) (4 8. ©
= ° e oo % o’ ) °
2 ° ° PY :. ) [ ) PY f‘..~
b o °® o %0 ° ‘ O, &
& 100M PY o o o © ® 0% ®
k] ® P ° ® o Y o ° ¢o ®
T . e ® ° o e 9 ®
£ °
5 ° ° ° o o 00 ¢ o000 goo © ooo:°:o o. :
g M e ® o9 e o, ) 8. o A °
°
AlexNet © @ o ° ° ° .
° ® og % *.® PPY ® J ™ PY ... ®
°® °
10K|
° L °

2010 201 2012 2013 2014 2015 2016

O Table of Contents

9 Chapter 1 Preview

2018 2019 2020 2021 2022 2023 2024

Publication date

Figure 1.3.13



https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2005.14165
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/

Chapter 1: Research and Development
1.3 Notable Al Models

Training models on increasingly large datasets has led to
significantly longer training times (Figure 1.3.14). Some
state-of-the-art models, such as Llama 3.1-405B, required
approximately 90 days to train—a typical window by today’s
standards. Google’s Gemini 1.0 Ultra, released in late 2023,

Training length of notable Al models, 2010-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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took around 100 days. This stands in stark contrast to AlexNet,
one of the first models to leverage GPUs for enhanced
performance, which trained in just five to six days in 2012.
Notably, AlexNet was trained on far less advanced hardware.
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Compute Trends

The term “compute” in Al models denotes the computational
resources required to train and operate a machine learning
model. Generally, the complexity of the model and the size
of the training dataset directly influence the amount of
compute needed. The more complex a model is, and the
larger the underlying training data, the greater the amount of
compute required for training. Before the final training run,
researchers conduct numerous test runs throughout the R&D
phase. While training a single model is relatively inexpensive,
the cumulative cost of multiple R&D runs and the necessary
datasets quickly becomes significant. These figures reflect
only the final training run, not the entire R&D process.

Artificial Intelligence
Index Report 2025

[Az

Figure 1.3.15 visualizes the training compute required for
notable machine learning models over the past 22 years.
Recently, the compute usage of notable Al models has
increased exponentially.?? Epoch estimates that the training
compute of notable Al models doubles roughly every five
months. This trend has been especially pronounced in the last
five years. This rapid rise in compute demand has important
implications. Forinstance, models requiring more computation
often have larger environmental footprints, and companies
typically have more access to computational resources than
academic institutions. For reference, Chapter 2 of the Al
Index analyzes the relationship between improvements in

computational resources and model performance.

Training compute of notable Al models by sector, 2003-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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22 FLOP stands for “floating-point operation.” A floating-point operation is a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or
division. The number of FLOP a processor or computer can perform per second is an indicator of its computational power. The higher the FLOP rate, the more powerful the computer. The
number of floating-point operations used to train an Al model reflects its requirement for computational resources during development.

23 Estimating training compute is an important aspect of Al model analysis, yet it often requires indirect measurement. When direct reporting is unavailable, Epoch estimates compute by
using hardware specifications and usage patterns or by counting arithmetic operations based on model architecture and training data. In cases where neither approach is feasible, benchmark
performance can serve as a proxy to infer training compute by comparing models with known compute values. Full details of Epoch’s methodology can be found in the documentation section

of their website.
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Figure 1.3.16 highlights the training compute of notable
machine learning models since 2012. For example, AlexNet,
one of the models that popularized the now standard practice
of using GPUs to improve Al models, required an estimated
470 petaFLOP for training.2* The original Transformer,
released in 2017, required around 7,400 petaFLOP. OpenAl’s
GPT-40, one of the current state-of-the-art foundation
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models, required 38 billion petaFLOP. Creating cutting-
edge Al models now demands a colossal amount of data,
computing power, and financial resources that are not
available to academia. Most leading Al models are coming
from industry, a trend that was first highlighted in last year’s
Al Index. Although the gap has slightly narrowed this year,
the trend persists.

Training compute of notable Al models by domain, 2012-24
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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24 A petaFLOP (PFLOP) is a unit of computing power equal to one quadrillion (10%) floating-point operations per second.
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The launch of DeepSeek’s V3 model in December 2024
garnered significant attention, particularly because it
achieved exceptionally high performance while requiring
far fewer computational resources than many leading LLMs.
Figure 1.3.17 compares the training compute of notable
machine learning models from the United States and China,
highlighting a key trend: Top-tier Al models from the U.S.
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have generally been far more computationally intensive than
Chinese models. According to Epoch Al, the top 10 Chinese
language models by training compute have scaled at a rate
of about three times per year since late 2021—considerably
slower than the five times per year trend observed in the rest
of the world since 2018.

Training compute of select notable Al models in the United States and China, 2018-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Highlight:
Will Models Run Out of Data?

One of the key drivers of substantive algorithmic
improvements in Al systems has been the scaling
of models and their training on ever-larger datasets.
However, as the supply of internet training data becomes
increasingly depleted, concerns have grown about the
sustainability of this scaling approach and the potential
for a data bottleneck, where returns to scale diminish.
Last year’s Al Index explored various factors in this
debate, including the availability of existing internet data
and the potential for training models on synthetic data.
New research this year suggests that the current stock of
data may last longer than previously expected.

Estimated median data stocks
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Epoch Al has updated its previous estimates for when Al
researchers might run out of data. In its latest research,
the team estimated the total effective stock of data
available for training models according to token count
(Figure 1.3.18). Common Crawl, an open repository of web
crawl data frequently used in Al training, is estimated to
contain a median of 130 trillion tokens. The indexed web
holds approximately 510 trillion tokens, while the entire
web contains around 3,100 trillion. Additionally, the total
stock of images is estimated at 300 trillion, and video at
1,350 trillion.

3,100T

Common Crawl| Index web Whole web Images Video
(incl. private data)

Data source

Figure 1.3.18
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Will Models Run Out of Data? (cont’d)

The Epoch Al research team projects, with an 80%
confidence interval, that the current stock of training
data will be fully utilized between 2026 and 2032 (Figure
1.3.19). Several factors influence the point in time when
data is likely to run out. One key factor is the historical
growth of dataset sizes, which depends on how
many people generate and contribute content to the
internet. Another important factor is computer usage.
If models are trained in a compute-optimal manner, the
available data stock can last longer. However, if models

Projections of the stock of public text and data usage
Source: Epoch Al, 2025 | Chart: 2025 Al Index report

are overtrained to achieve more compute-efficient
inference performance, the stock is likely to be depleted
sooner. When Al models are overtrained, meaning they
are trained for an extended period beyond the typical
point of diminishing returns, they may achieve more
compute-efficient inference—that is, they can process
prompts (make predictions, generate text, etc.) using
less computational power. However, this comes at a
cost: The stock (i.e., data available to train the model)
may be depleted more quickly.
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Will Models Run Out of Data? (cont’d)

These projections differ slightly from Epoch’s earlier
estimates, which predicted that high-quality text data
would be depleted by 2024. The revised projections
reflect an updated methodology that incorporates new
research showing that web data performs better than
curated corpora and that models can be trained on
the same datasets multiple times. The realization that
carefully filtered web data is effective and that repeated
training on the same dataset is viable has expanded
estimates of the available data stock. As a result, the
Epoch researchers pushed back their forecasts of when
data depletion might occur.

Using synthetic data—data generated by Al models
themselves—to train models has also been suggested
as a solution to potential data shortages. The 2024 Al

Index suggests there are limitations associated with
this approach, namely that models trained this way are
likely to lose representation of the tails of distributions
when performing repeated training cycles on synthetic
data. This leads to degraded model output quality. This
phenomenon was observed across different model
architectures, including variational autoencoders (VAEs),
Gaussian mixture models (GMMs), and LLMs. However,
newer research suggests that when synthetic data is
layered on top of real data, rather than replacing it, the
model collapse phenomenon does not occur. While this
accumulation does not necessarily improve performance
or reduce test loss (lower test loss indicates better model
performance), it also does not result in the same degree of
degradation as outright data replacement (Figure 1.3.20).

Effect of data accumulation on language models pretrained on TinyStories

Source: Gerstgrasser et al., 2024 | Chart: 2025 Al Index report
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Will Models Run Out of Data? (cont’d)

This year, there have been advances in generating
high-fidelity synthetic data. However, synthetic data is
still generally distinguishable from real data, and there
is no existing scalable method to achieve the same
performance training LLMs on synthetic data compared
to real data. A team of Slovenian researchers compared

the performance of models trained on synthetic and real
data across multiple architectures and datasets. They
evaluated how well synthetic relational data preserves key
characteristics of the original data (“fidelity”) and remains
useful for downstream tasks (“utility”). They found that
most methods are systematically detectable as synthetic,
especially once relational information is considered.

typically
compared to real data—trained models, but some methods

Furthermore, performance deteriorates
still yield moderately good predictive scores. In a few
experiments, synthetic data outperformed real data such
as using Synthetic Data Vault (SDV) vs. Walmart data to
train an XGBoost classifier. The researchers showed that
training on the synthetic dataset achieves a lower mean
squared error (MSE). There is also evidence that synthetic
data shows promise in the healthcare domain. More

specifically, some model architectures lead to enhanced

9 Chapter 1 Preview

performance on classification and prediction tasks by
training on synthetically augmented datasets, increasing
F1scores or AUROC by 5%—-10% on minority classes.?®

There are concerns around the quality and fidelity of
synthetically generated data, as LLMs are known to
hallucinate and provide factually incorrect outputs. When
training on hallucinated content in datasets, models can
experience compounded degradation in output quality.
New techniques have been developed to combat this
issue. For example, researchers from Stanford and the
University of North Carolina at Chapel Hill have used
automated fact-checking and confidence scores to rank
factuality scores of model response pairs. The FactTune-
FS methods introduced by these researchers have tended
to outperform other RLHF and decoding-based methods
for factuality improvement (Figure 1.3.21). Human-in-the-
loop approaches to label preferred responses have also
been used to align language models. While promising,
the human-in-the-loop approaches tend to be more
expensive. Finally, post hoc filtering and debiasing
methods can be used to remove anomalies in synthetic
data before the training stage.

25 AUROC (area under the receiver operating characteristic) curve is a widely used metric for evaluating Al model performance, particularly in classification tasks.
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Will Models Run Out of Data? (cont’d)

Factual accuracy: percentage of correct answers in biographies

Source: Tian et al., 2023 | Chart: 2025 Al Index report
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As the prevalence of synthetic data grows, particularly
with an increasing share of web content being Al-
generated, future models will inevitably be trained on
non-human-generated material. While synthetic data
offers the advantage of a near-infinite supply, effectively
leveraging it for model training requires a deeper
understanding of its impact on learning dynamics and
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performance. One approach to expanding datasets is
data augmentation, which modifies real data—such as
tilting or image mixing—to create new variations while
preserving essential characteristics. Both synthetic data
generation and data augmentation present opportunities
to enhance Al models, but their effective use demands
further research.
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Inference Cost

Last year’s Al Index highlighted the rapidly rising training costs
of frontier LLM systems. This year, in addition to updating its
analysis on training costs, the Index examines how inference
costs for frontier systems have evolved over time. Inference
costs refer to the expense of querying a trained model, and
they are typically measured in USD per million tokens. Data on
Al token pricing comes from both Artificial Analysis and Epoch
Al’s proprietary database on API pricing. The reported price is
a 3:1 weighted average of input and output token prices.

To analyze inference costs, the Al Index worked with
Epoch to measure how costs have decreased for a fixed
Al performance threshold. This standardized approach
facilitates a more accurate comparison. While newer models
may cost more, they also tend to perform significantly

Inference price across select benchmarks, 2022-24
Source: Epoch Al, 2025; Artificial Analysis, 2025 | Chart: 2025 Al Index report
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better—so comparing them directly to older, less capable
models can obscure the real trend: Al performance per dollar
has improved substantially. For instance, the inference cost
for an Al model scoring the equivalent of GPT-3.5 (64.8)
on MMLU, a popular benchmark for assessing language
model performance, dropped from $20 per million tokens in
November 2022 to just $0.07 per million tokens by October
2024 (Gemini-1.5-Flash-8B)—a more than 280-fold reduction
in approximately 1.5 years. A similar trend is evident in the
cost of models scoring above 50% on GPQA, a substantially
more challenging benchmark than MMLU. There, inference
costs declined from $15 per million tokens in May 2024 to
$0.12 per million tokens by December 2024 (Phi 4). Epoch Al
estimates that, depending on the task, LLM inference costs
have been falling anywhere from nine to 900 times per year.

® GPT-3.5 level+ in multitask language understanding (MMLU) GPT-4o0 level+ in PhD-level science questions (GPQA Diamond)
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The inference cost to achieve a given level of performance has
declined notably over time. However, state-of-the-art models
remain more expensive than some of the previously mentioned
alternatives. Figure 1.3.23 illustrates the cost per million tokens

Output price per million tokens for select models
Source: Atrtificial Analysis, 2025 | Chart: 2025 Al Index report
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for leading models from developers such as OpenAl, Meta, and
Anthropic.26 These top-tier models are generally priced higher
than smaller models from the same companies, reflecting the
premium required for cutting-edge performance.

ol Claude 3.5 Sonnet
(Oct 2024)

(Nov 2024)

Training Cost

A frequent discussion around foundation models pertains to
their high training costs. While Al companies rarely disclose
exact figures, costs are widely estimated to reach into the
millions of dollars—and continue to rise. OpenAl CEO Sam
Altman, for instance, indicated that training GPT-4 exceeded
$100 million. In July 2024, Anthropic CEO Dario Amodei noted
that model training runs costing around $1 billion were already
underway. Even more recent models, such as DeepSeek-V3,
reportedly cost less—about $6 million—but overall, training
remains extremely expensive.?

Mistral Large 2

Model

5.00
350 219
Gemini 1.5 Pro Llama 3.1 405B DeepSeek R1
(Sep 2024)
Figure 1.3.23

Understanding the costs associated with training Al models
remains important, yet detailed cost information remains
scarce. Last year, the Al Index published initial estimates on
the costs of training foundation models. This year, the Al Index
once again partnered with Epoch Al to update and refine
these estimates. To calculate costs for cutting-edge models,
the Epoch team analyzed factors such as training duration,
hardware type, quantity, and utilization rates, relying on
information from academic publications, press releases, and
technical reports.®

26 The Index visualizes a selection of state-of-the-art models with publicly available pricing as of February 2025. Since publication, newer models may have been released and pricing may

have changed.

27 Some reports have disputed the stated cost of DeepSeek-V3, arguing that when factoring in employee salaries, capital expenditures, and research expenses, the actual development costs

were significantly higher.

28 A detailed report on Epoch’s research methodology is available in this paper.
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1.3 Notable Al Models

Figure 1.3.24 visualizes the estimated training cost associated
with select Al models, based on cloud compute rental prices.
Figure 1.3.25 visualizes the training cost of all Al models for
which the Al Index has estimates.

Al Index estimates validate suspicions that in recent years
model training costs have significantly increased. For
example, in 2017, the original Transformer model, which
introduced the architecture that underpins virtually every
modern LLM, cost around $670 to train. RoBERTa Large,
released in 2019, which achieved state-of-the-art results on
many canonical comprehension benchmarks like SQUAD
and GLUE, cost around $160,000 to train. Fast-forward to
2023, and training costs for OpenAl’s GPT-4 were estimated

around $79 million.

Estimated training cost of select Al models, 2019-24
Source: Epoch Al, 2024 | Chart: 2025 Al Index report
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29 The cost figures reported in this section are inflation-adjusted.
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One of the few 2024 models for which Epoch could estimate
training costs was Llama 3.1-405B, with an estimated cost of
$170 million. As the Al landscape grows more competitive,
companies are disclosing less about their training processes,
making it increasingly difficult to estimate computational
costs.

As established in previous Al Index reports, there is a direct
correlation between the training costs of Al models and their
computational requirements. As illustrated in Figure 1.3.26,
models with greater computational training needs cost
substantially more to train.
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1.3 Notable Al Models

Estimated training cost of select Al models, 2016-24

Source: Epoch Al, 2024 | Chart: 2025 Al Index report

Artificial Intelligence
Index Report 2025

[Az

Gemini 1.0 Ultra® Llama :’:1-4058
100M GF:-_4 Nemotron-2 3408
Inflectiof®2
[ ]
] PalM 2@ Qjalcon-180B
3 PaLM (540B)
o -
2 10M ° ° GPT. 3.5 .
n GPT-3 175B (davinci) )
4 P o °
3 BLOOM-176B @ Llama 2-70B
3 ° p
8 PO ®LLaMA-65B
2 ™ ° @lyperCLOVA 823. LaMDA
b ® @ Switch
% GNMT AlphaStar
] PY L )
> Megatron-BERT [ [}
£ RoBERTa Large® @ Meta Pseudo Labels
‘S 100K
=
JFT )
Xception ® :
o BigGAN-deep 512x512
10K [ )
2016 2017 2018 2019 2020 2021 2022 2023 2024
Publication date
Figure 1.3.25

Estimated training cost and compute of select Al models
Source: Epoch Al, 2024 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.4 Hardware

Hardware advancements play a critical role
in driving Al progress. While scaling models
and training on larger datasets have led to
significant  performance  improvements,
these advances have largely been enabled by
improvements in hardware—particularly the
development of more powerful and efficient
GPUs (graphics processing units). GPUs
accelerate complex computations, allowing
models to process vast amounts of data in
parallel and significantly reducing training
time. This section of the Index leverages
data from Epoch Al to analyze key trends in
machine learning hardware and its impact on
Al development.

While this section currently emphasizes
compute performance (FLOP/s), network
bandwidth—the speed at which GPUs
communicate—is equally critical. Although
data on network bandwidth of data centers
is limited, future editions of the Al Index will
aim to include this information.
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1.4 Hardware

Overview

Figure 1.4.1 illustrates the peak computational performance of ML hardware
across different precision types, where precision refers to the number of bits
used to represent numerical values, particularly floating-point numbers, in
computations. The choice of precision depends on the specific goal. For instance,
lower-precision hardware, which requires fewer bits and has lower memory
bandwidth, is ideal for optimizing computation speed and energy efficiency. This
is particularly beneficial for Al models running on edge or mobile devices or in
scenarios where inference speed is a priority. On the other hand, higher-precision
hardware preserves greater numerical accuracy, making it essential for scientific
computing and applications sensitive to precision errors. Of the precisions
visualized in the figures below, FP32 has the highest precision, TF32 offers
medium-high precision, and Tensor-FP16/BF16 and FP16 are lower-precision
formats optimized for speed and efficiency.

Measured in 16-bit floating-point operations, Epoch estimates that machine learning
hardware performance has grown over the period 2008—2024 at an annual rate of
approximately 43%, doubling every 1.9 years. According to Epoch, this progress
has been driven by increased transistor counts, advancements in semiconductor
manufacturing, and the development of specialized hardware for Al workloads.

Peak computational performance of ML hardware for different precisions, 2008-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.4 Hardware

The price-performance of leading machine learning
hardware has steadily improved. Figure 1.4.2 illustrates the
performance of selected Nvidia data center GPUs—among
the most commonly used for Al training—in FLOP per
second. Figure 1.4.3 visualizes the price-performance of
those same GPUs, measured in FLOP per second per dollar.

For example, the H100 GPU, announced in March 2022,

Artificial Intelligence
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[Az

achieves 22 billion FLOP per second per dollar, which is
approximately 1.7 times the price-performance of the A100
(launched in June 2020) and 16.9 times that of the P100
(released in April 2016). Epoch estimates that hardware with
a fixed performance level decreases in cost by 30% annually,
making Al training increasingly affordable, scalable, and
conducive to model improvements.

Performance of leading Nvidia data center GPUs for machine learning

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.4 Hardware

Figure 1.4.4, based on the Epoch Al notable machine learning
models dataset, examines the hardware used to train notable
machine learning models. As of 2024, the most commonly

Price-performance of leading Nvidia data center GPUs for machine learning
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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reported hardware was the A100, used by 64 models, followed
by the V100. An increasing number of models are now being
trained on the H100, with 15 reported by the end of 2024.
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Cumulative number of notable Al models trained by accelerator, 2017-24
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.4 Hardware

Highlight:

Energy Efficiency and Environmental Impact

Training Al systems requires substantial energy, making
the energy efficiency of machine learning hardware
a critical factor. Epoch Al reports that ML hardware
has become increasingly energy efficient over time,
improving by approximately 40% per year. Figure 1.4.5
illustrates the energy efficiency of Tensor-FP16 precision

hardware, measured in FLOP/s per watt. For instance, the
Nvidia B100, released in March 2024, achieved an energy
efficiency of 2.5 trillion FLOP/s per watt, compared to
the Nvidia P100, released in April 2016, which reported
74 billion FLOP/s per watt. This means the B100 is 33.8
times more energy efficient than the P100.

Energy efficiency of leading machine learning hardware, 2016-24
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.4 Hardware

Highlight:
Energy Efficiency and Environmental Impact (cont’d)

Despite significantimprovementsinthe energy efficiency Epoch Al, the power required to train frontier Al models
of Al hardware, the overall power consumption required is doubling annually. The rising power consumption of
to train Al systems continues to rise rapidly. Figure 1.4.6 Al models reflects the trend of training on increasingly
illustrates the total power draw, measured in watts, for larger datasets.

training various state-of-the-art Al models. For example,

the original Transformer, introduced in 2017, consumed Unsurprisingly, given that the total amount of power
an estimated 4,500 watts. In contrast, PaLM, one of used to train Al systems has increased over time, so
Google’s first flagship LLMs, had a power draw of 2.6 has the amount of carbon emitted by the models. Many
million watts—almost 600 times that of the Transformer. factors determine the amount of carbon emitted by Al
Llama 3.1-405B, released in the summer of 2024, systems, including the number of parameters in a model,
required 25.3 million watts, consuming over 5,000 times the power usage effectiveness of a data center, and the
more power than the original Transformer. According to grid carbon intensity.°

Total power draw required to train frontier models, 2011-24
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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30 Power usage effectiveness (PUE) is a metric used to evaluate the energy efficiency of data centers. It is the ratio of the total amount of energy used by a computer data center facility,
including air conditioning, to the energy delivered to computing equipment. The higher the PUE, the less efficient the data center.
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1.4 Hardware

Highlight:

Energy Efficiency and Environmental Impact (cont’d)

Figure 1.4.7 illustrates the carbon emissions of selected
Al models, sorted by their release year. To estimate
these emissions, the Al Index used carbon data
published by model developers and supplemented it
with calculations from a widely used online Al training
emissions calculator. This step was necessary as
many developers do not disclose their models’ carbon
footprints. The calculator estimates emissions based
on the type of hardware used for training, total training
hours, cloud provider, and training region.®

The carbon emissions from training frontier Al models
have steadily increased over time. While AlexNet’s
emissions were negligible, GPT-3 (released in 2020)
reportedly emitted around 588 tons of carbon during
training, GPT-4 (2023) emitted 5,184 tons, and Llama 3.1
405B (2024) emitted 8,930 tons. DeepSeek V3, released
in 2024, and whose performance is comparable to
OpenAl’s o1, is estimated to have emissions comparable
to the GPT-3, released five years ago. For context, on
average, Americans emit 18.08 tons of carbon per capita

per year.

Estimated carbon emissions from training select Al models and real-life activities, 2012—-24
Source: Al Index, 2025; Strubell et al., 2019 | Chart: 2025 Al Index report
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31The Al Index sourced input data—such as training hardware and duration—for the emissions calculator from various online sources. To validate the accuracy of the calculator, the Index
compared the calculator’s estimates with actual emissions reported by developers and found that the results were largely consistent. The full estimation methodology is detailed in the
Appendix.
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Chapter 1: Research and Development
1.4 Hardware

Highlight:
Energy Efficiency and Environmental Impact (cont’d)

Estimated carbon emissions and number of parameters by select Al models
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
1.5 Al Conferences

Al conferences serve as essential platforms
for researchers to present their findings and
network with peers and collaborators. Over
the past two decades, these conferences
have expanded in scale, quantity, and
prestige. This section explores trends in
attendance at major Al conferences.

1.5 Al Conferences

Conference Attendance

Figure 1.5.1graphs attendance at a selection of Al conferences a growing interest in Al research but also the emergence of
since 2010. In 2020 the pandemic forced conferences to be new Al conferences.
held fully online, increasing attendance significantly. This was

followed by a decline in attendance, likely due to the shift Neural Information Processing Systems (NeurlPS) remains
back to in-person formats, returning attendance in 2022 to the most attended Al conference, attracting almost 20,000
prepandemic levels. Since then, there has been a steady participants in 2024 (Figure 1.5.2 and Figure 1.5.3). Among the
growth in conference attendance, increasing almost 21.7% major Al conferences, NeurlPS, CVPR, ICML, ICRA, ICLR,
from 2023 to 2024.32 Since 2014, the annual number of IROS and AAAI experienced increases in attendance over
attendees has risen by more than 60,000, reflecting not just the last year.

Attendance at select Al conferences, 2010-24
Source: Al Index, 2024 | Chart: 2025 Al Index report
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Figure 1.5.1

32 This data should be interpreted with caution given that many conferences in the last few years have had virtual or hybrid formats. Conference organizers report that measuring the exact
attendance numbers at virtual conferences is difficult, as virtual conferences allow for higher attendance of researchers from around the world. The Al Index reports total attendance figures,
encompassing virtual, hybrid, and in-person participation. The conferences for which the Al Index tracked data include AAAI, AAMAS, CVPR, EMNLP, FAccT, ICAPS, ICCV, ICLR, ICML,
ICRA, IJCALI, IROS, KR, NeurlPS, and UAI.
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1.5 Al Conferences

Attendance at large conferences, 2010-24
Source: Al Index, 2024 | Chart: 2025 Al Index report
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Attendance at small conferences, 2010-24
Source: Al Index, 2024 | Chart: 2025 Al Index report
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33 The significant spike in ICML attendance in 2021 was likely due to the conference being held virtually that year.
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1.6 Open-Source Al Software

GitHub is a web-based platform that enables
individuals and teams to host, review, and
collaborate on code repositories. Widely used
by software developers, GitHub facilitates

code management, project collaboration, 1 6 O _S AI S ft
and open-source software support. This ° pen Ource O Wa re
section draws on data from GitHub that

provides insights into broader trends in PrOJeC‘tS

open-source Al software development not . . . . . . .
reflected in academic publication data.® A GitHub project comprises a collection of files, including source code,

documentation, configuration files, and images, that together make up a software
project. Figure 1.6.1 looks at the total number of GitHub Al projects over time.*®
Since 2011, the number of Al-related GitHub projects has consistently increased,
growing from 1,549 in 2011 to approximately 4.3 million in 2024. Notably, there was
a sharp 40.3% rise in the total number of GitHub Al projects in the last year alone.

Number of GitHub Al projects, 2011-24
Source: GitHub, 2024 | Chart: 2025 Al Index report
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Figure 1.6.1

34 This year, GitHub updated its methodology to capture a broader range of Al-related topics, including more recent developments. As a result, the figures in this year’s Al Index may not align
with those from previous editions. Chinese researchers often use alternative sites to GitHub for code sharing, such as Gitee and GitCode, but the data from those sites is not included in this
report. A full methodological description is available in the Appendix.

35 GitHub used Al-topic classification methods to identify Al-related repositories. Details on the methodology are available in the Appendix.
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1.6 Open-Source Al Software

Figure 1.6.2 reports GitHub Al projects by geographic contributor with 19.9%, followed closely by Europe, which
area since 2011. As of 2024, a significant share of GitHub accounted for 19.5%. Notably, the share of open-source Al
Al projects were located in the United States, accounting projects on GitHub from U.S.-based developers has declined
for 23.4% of contributions. India was the second largest since 2016 and appears to have stabilized in recent years.

GitHub Al projects (% of total) by geographic area, 2011-24

Source: GitHub, 2024 | Chart: 2025 Al Index report
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1.6 Open-Source Al Software

Stars

GitHub users can show their interest in a repository by
“starring” it, a feature similar to liking a post on social
media, which signifies support for an open-source project.
Among the most starred repositories are libraries such as
TensorFlow, OpenCV, Keras, and PyTorch, which enjoy
widespread popularity among software developers in the
broader developer community beyond Al. TensorFlow, Keras,
and PyTorch are popular libraries for building and deploying
machine learning models, while OpenCV offers a variety

Number of GitHub stars in Al projects, 2011-24

Source: GitHub, 2024 | Chart: 2025 Al Index report
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of tools for computer vision, such as object detection and
feature extraction.

The total number of stars for Al-related projects on GitHub
continued to rise last year, increasing from 14.0 million in
2023 to 17.7 million in 2024 (Figure 1.6.3).%¢ This follows a
particularly sharp rise from 2022 to 2023, when the total
more than doubled.
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Figure 1.6.3

36 Figure 1.6.3 shows new stars given to GitHub projects within a year, not the total accumulated over time.
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1.6 Open-Source Al Software

In 2024, the United States led in receiving the highest number India, saw a year-over-year increase in the total number of
of GitHub stars, totaling 21.1 million (Figure 1.6.4). All major GitHub stars awarded to projects located in their countries.
geographic regions sampled, including Europe, China, and

Number of GitHub stars by geographic area, 2011-24

Source: GitHub, 2024 | Chart: 2025 Al Index report
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CHAPTER 2:
Technical Performance

Overview

The Technical Performance section of this year’s Al Index provides a comprehensive
overview of Al advancements in 2024. It begins with a high-level summary of Al
technical progress, covering major Al-related launches, the state of Al capabilities, and
key trends—such as the rising performance of open-weight models, the convergence
of frontier model performance, and the improving quality of Chinese LLMs. The
chapter then examines the current state of various Al capabilities, including language
understanding and generation, retrieval-augmented generation, coding, mathematics,
reasoning, computer vision, speech, and agentic Al. New this year are significantly
expanded analyses of performance trends in robotics and self-driving cars.
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Chapter Highlights

1. Al masters new benchmarks faster than ever. In 2023, Al researchers introduced several challenging new
benchmarks, including MMMU, GPQA, and SWE-bench, aimed at testing the limits of increasingly capable Al systems. By 2024,
Al performance on these benchmarks saw remarkable improvements, with gains of 18.8 and 48.9 percentage points on MMMU
and GPQA, respectively. On SWE-bench, Al systems could solve just 4.4% of coding problems in 2023—a figure that jumped
to 71.7% in 2024.

2. Open-weight models catch up. Last year’s Al Index revealed that leading open-weight models lagged significantly
behind their closed-weight counterparts. By 2024, this gap had nearly disappeared. In early January 2024, the leading closed-
weight model outperformed the top open-weight model by 8.04% on the Chatbot Arena Leaderboard. By February 2025, this
gap had narrowed to 1.70%.

3. The gap between Chinese and US models closes. In 2023, leading American models significantly outperformed
their Chinese counterparts—a trend that no longer holds. At the end of 2023, performance gaps on benchmarks such as MMLU,
MMMU, MATH, and HumanEval were 17.5, 13.5, 24.3, and 31.6 percentage points, respectively. By the end of 2024, these
differences had narrowed substantially to just 0.3, 8.1, 1.6, and 3.7 percentage points.

4. Al model performance converges at the frontier. According to last year’s Al Index, the Elo score difference between
the top and 10th-ranked model on the Chatbot Arena Leaderboard was 11.9%. By early 2025, this gap had narrowed to just
5.4%. Likewise, the difference between the top two models shrank from 4.9% in 2023 to just 0.7% in 2024. The Al landscape is
becoming increasingly competitive, with high-quality models now available from a growing number of developers.

5. New reasoning paradigms like test-time compute improve model performance. In 2024, OpenAl introduced
models like o1 and 03 that are designed to iteratively reason through their outputs. This test-time compute approach dramatically
improved performance, with o1 scoring 74.4% on an International Mathematical Olympiad qualifying exam, compared to GPT-
40’s 9.3%. However, this enhanced reasoning comes at a cost: o1 is nearly six times more expensive and 30 times slower than
GPT-40.
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Chapter Highlights (cont’d)

6. More challenging benchmarks are continually proposed. The saturation of traditional Al benchmarks like MMLU,
GSM8K, and HumanEval, coupled with improved performance on newer, more challenging benchmarks such as MMMU and
GPQA, has pushed researchers to explore additional evaluation methods for leading Al systems. Notable among these are
Humanity’s Last Exam, a rigorous academic test where the top system scores just 8.80%; FrontierMath, a complex mathematics
benchmark where Al systems solve only 2% of problems; and BigCodeBench, a coding benchmark where Al systems achieve a

35.5% success rate—well below the human standard of 97%.

7. High-quality Al video generators demonstrate significant improvement. In 2024, several advanced Al models
capable of generating high-quality videos from text inputs were launched. Notable releases include OpenAl’s SORA, Stable
Video 3D and 4D, Meta’s Movie Gen, and Google DeepMind’s Veo 2. These models produce videos of significantly higher quality

compared to those from 2023.

8. Smaller models drive stronger performance. In 2022, the smallest model registering a score higher than 60% on
MMLU was PaLM, with 540 billion parameters. By 2024, Microsoft’s Phi-3-mini, with just 3.8 billion parameters, achieved the

same threshold. This represents a 142-fold reduction in over two years.

9. Complex reasoning remains a problem. Even though the addition of mechanisms such as chain-of-thought
reasoning has significantly improved the performance of LLMs, these systems still cannot reliably solve problems for which
provably correct solutions can be found using logical reasoning, such as arithmetic and planning, especially on instances larger
than those they were trained on. This has a significant impact on the trustworthiness of these systems and their suitability in

high-risk applications.

10. Al agents show early promise. The launch of RE-Bench in 2024 introduced a rigorous benchmark for evaluating
complex tasks for Al agents. In short time-horizon settings (two-hour budget), top Al systems score four times higher than human
experts, but as the time budget increases, human performance surpasses Al—outscoring it two to one at 32 hours. Al agents

already match human expertise in select tasks, such as writing Triton kernels, while delivering results faster and at lower costs.
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2.1 Overview of Al in 2024

The Technical Performance chapter begins with a high-
level overview of significant model releases in 2024 and
reviews the current state of Al technical performance.

2.1 Overview of Al in 2024

Timeline: Significant Model and Dataset Releases

As chosen by the Al Index Steering Committee, here are some of the most notable model and dataset releases of 2024.

Date Name Category Creator(s) Significance Image

Jan 19,2024 | Stable LM 2 LLM Stability Al Stability’s latest language model builds
on the original Stable LM, offering
enhanced performance. With only 1.6
billion parameters, it is designed to run Figure 211

efficiently on portable devices such as Source: Wikipedia, 2025
laptops and smartphones.

Feb 8, 2024 Aya Dataset Dataset Cohere for A collection of 513 million prompt-

Al, Beijing completion pairs spanning 114
Academy of | languages, released as part of Cohere’s
Al, Cohere, Aya initiative. This paper and its
Binghamton | accompanying dataset represent
University significant milestones in multilingual
instruction tuning.

Figure 2.1.2
Source: Cohere, 2025

Feb 15,2024 | Gemini1.5Pro | LLM Google Google’s Gemini model set a new
DeepMind benchmark with its 1M token context
window, far exceeding GPT-4 Turbo’s

128K token limit. Figure 2.1.3
Source: Google, 2024

Feb 20,2024 | SDXL-Lightning | Text-to- ByteDance Developed by ByteDance, the creators
image of TikTok, this model was among the
fastest text-to-image systems at its
release, generating high-quality synthetic
images in under a second. Its speed was
achieved through progressive adversarial | Figure2.1.4

distillation, unlike other models that rely Source: Hugging Face, 2025
on diffusion-based techniques.

Mar 4,2024 | Claude 3 LLM Anthropic Anthropic’s latest LLM outperforms
GPT-4 and Gemini on nearly all industry
benchmarks, reduces incorrect prompt
refusals, and delivers significantly higher
accuracy.

Figure 2.1.5
Source: Anthropic, 2025
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Mar 7, 2024 Inflection-2.5 LLM Inflection Al | Inflection’s flagship product, “Pi,”
featured an exceptional model with
GPT-4-level performance while using
only 40% of its computing resources.
Just two weeks after the model’s release,
Microsoft acquired Inflection for $650
million.
Figure 2.1.6
Source: Inflection, 2025
Mar 19, 2024 | Moirai and Model/ Salesforce Salesforce unveils Moirai, a foundation
LOTSA dataset model for universal forecasting,
alongside LOTSA—a diverse, large-
scale time series dataset with 27 billion
observations spanning nine domains.
Figure 21.7
Source: Salesforce, 2025
Mar 27,2024 | DBRX LLM Databricks Databricks’ open-source mixture-of-
experts (MoE) LLM is a fine-grained
model, surpassing similar small MoE
models like Mixtral and Grok. This .
Figure 2.1.8
transformer decoder-only model features | gource: Databricks, 2025
132B parameters (36B active per input)
and was trained on 12 trillion tokens.
Apr 2, 2024 Stable Audio 2 | Text-to- Stability Al The latest version of Stable Audio,
song and Stability’s Al-powered song generator,
song-to- now supports audio-to-audio
song functionality. Users can upload songs and
manipulate them using natural language | Figure2.1.9
prompts for seamless customization. Source: Stability Al, 2025
Apr17,2024 | Llama 3 LLM Meta The Llama 3 series debuts with 8B and
70B parameter text-based models,
ranking among the highest performing
models of their size to date.
Figure 2.1.10
Source: Meta, 2025
May 13,2024 | GPT-40 Multimodal | OpenAl GPT-40 is a new multimodal model
capable of processing inputs in any
combination of text, audio, images, and
video, and generating outputs in the
same formats. It responds to audio in
as little as 320 milliseconds, matching
human response times.
Figure 2.1.11
Source: OpenAl, 2024
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Jun 7, 2024 wen2 LLM Alibaba Qwen2, developed by China’s Alibaba,
is a series of advanced base and
instruction-tuned models. These models
rival competitors like Llama 3-70B and
Mixtral-8x22B in performance across Figure 2.1.12
numerous benchmarks. ScurceQwen.i2024

Jun 17,2024 | Runway Gen-3 | Text-to- Runway Runway’s upgraded video generation
video and model sets a new standard for the
image-to- field, particularly excelling in creating
video photorealistic humans with vivid and

expressive emotionality.

Figure 2113
Source: Runway, 2024

Jul 23,2024 | Llama 31405B | LLM Meta Meta has released its largest model to
date, the final in the Llama 3.1 family,
featuring 405B parameters. Upon its
release, it became the most capable
openly available foundation model,
rivaling many closed models across a

q Figure 2114
variety of benchmarks.

Source: Meta, 2024

Aug 12, 2024 | Falcon Mamba | LLM Technology A powerful new 7B parameter model,
Innovation built on the Mamba State Space
Institute in Language Model (SSLM) architecture,
Abu Dhabi enables Falcon—one of the few

government-created Al models—to
dynamically adjust parameters and filter | Figure 2115

out irrelevant inputs, making it more Source: Hugging Face, 2025
efficient than transformer-based models.

Aug 13, 2024 | Grok-2 Text-to-text | xAl Developed by xAl, Grok is an advanced
and text-to- text- and image-generation model that
image excels in image creation, advanced

reasoning, and problem-solving. Its
launch was particularly notable, as
it quickly rivaled the performance
of leading models despite xAl being
founded only in March 2023.

Figure 2.1.16
Source: xAl, 2025
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Aug 15,2024 | Imagen 3 Text-to- Google Labs | Google’s updated Al image generator
image achieves the highest Elo score on
the GenAl-Bench image benchmark,
setting a new standard for quality in Al-
generated visuals.
Figure 2.1.17
Source: Google, 2025
Aug 22,2024 | Jamba 1.5 LLM Al21 Labs The first LLM to combine state-space
models with transformers, delivering
high-quality results for text-based
applications. This hybrid approach
significantly enhances speed while
preserving the quality of outputs. Figure 2118
Source: Al21, 2025
Aug 29, 2024 | SynthID v2 Tool Google SynthID v2 is the updated version of
SynthID, Google’s watermarking and
identification software. It now supports
Al-generated content across images,
video, audio, and text, and offers
enhanced tracking and verification
capabilities.
Figure 2.1.19
Source: Google, 2025
Sep 11,2024 | NotebooklLM Text-to- Google Labs | The second end-to-end Al podcast
Podcast Tool podcast generator to hit the market, following
Synthpod, went viral. It gained popularity
among students leveraging NotebookLM
for studying and tech employees using it | Figure 2.1.20
to listen to Al-generated summaries. Source: Google, 2025
Sep 12,2024 | ol-preview Language, OpenAl OpenAl’s first model in the “o series” is
math, designed for advanced reasoning and
biology tackling complex tasks. It is significantly
more powerful than GPT, particularly in
math, science, and coding.
Figure 2.1.21
Source: OpenAl, 2025
Sep 17,2024 | NVLM (D, H, X) | Vision, Nvidia Nvidia released three open-access
language models for vision-language tasks,
achieving top scores on OCRBench (for
optical character recognition) and VQAv2
(for natural language understanding).
Figure 2.1.22
Source: Dai et al., 2024
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Sep 19,2024 | Qwen2.5 LLM Alibaba Qwen2.5, the latest series of foundation
models from Chinese e-commerce giant
Alibaba, includes a range of efficient
smaller models and specialized coding
and math models designed for targeted
functionality.
Figure 2.1.23
Source: Qwen, 2025
Oct 16,2024 | Ministral LLM Mistral Ministral is a pair of compact models (3B
and 8B parameters) that outperformed
Gemma and Llama models of similar
size across all major industry-recognized Figure 2124
benchmarks. Source: Mistral, 2025
Oct 22,2024 | Anthropic Agentic Anthropic Anthropic Computer Use is a
Computer Use | Capability groundbreaking computer control feature
for Claude 3.5 Sonnet users, allowing
Claude to move the cursor, type, and
autonomously complete tasks on the
user’s computer in real time.
Figure 2.1.25
Source: Anthropic, 2025
Oct 28,2024 | Apple iPhone Apple Apple’s suite of Al-powered features
Intelligence feature includes Image Playground (for image
creation), Genmoji (for custom emoji
creation), Siri integration with ChatGPT,
and more.
Figure 2.1.26
Source: Apple, 2025
Dec 3, 2024 Nova Pro Multimodal | Amazon Nova Pro is the most powerful model
in Amazon Web Services’ Nova family,
capable of processing both visual and
textual information. It especially excels at
analyzing financial documents.
Figure 2.1.27
Source: Amazon, 2025
Dec 11,2024 | Gemini 2 LLM Google The improved version of Gemini,
DeepMind Google’s LLM, now includes computer
control along with image and audio
generation capabilities. It is twice as fast
as Gemini 1.5 Pro and offers significantly
enhanced performance in coding and Figure 2.1.28
image analysis. Source: Google, 2025
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Dec 12, 2024 or

(V]

Text-to- OpenAl OpenAl’s highly anticipated video

video generation model can create videos up
to 20 seconds long at 1080p resolution
for ChatGPT Pro users (and five seconds
at 720p for ChatGPT Plus users). Sora
demos had been circulating at tech
meetups since early 2024, but OpenAl
delayed the official release to improve
model safety.

Figure 2.1.29
Source: OpenAl, 2025

Dec 13,2024 | Global MMLU Dataset Cohere A multilingual evaluation set featuring
professionally translated MMLU
questions across 42 languages, designed
to serve as a more global Al benchmark.
It evaluates Al performance in diverse
languages while addressing Western
biases in the original MMLU dataset,
where an estimated 28% of questions
rely on Western cultural knowledge.

Figure 2.1.30
Source: Singh et al., 2025

Dec 20,2024 | 03 (beta) Multimodal | OpenAl OpenAl’s newest frontier model, released
for safety testing by Al researchers,
outperforms all previous models in SWE,
competition code, competition math,
PhD-level science, and research math
benchmarks. It also set a new record

on the ARC-AGI benchmark, achieving
87.5% on the ARC Prize team’s private
holdout set.

Figure 2.1.31
Source: VentureBeat, 2025

Dec 27,2024 | DeepSeek-V3 LLM DeepSeek DeepSeek V3, an open-source model
developed with significantly fewer
computing resources than state-of-the-
art models, outperforms leading models
on benchmarks like MMLU and GPQA.

Figure 2.1.32
Source: Dirox, 2025
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State of Al Performance

In this section, the Al Index offers a high-level view into major Figure 2.1.33 illustrates the progress of Al systems relative
Al trends that occurred in 2024. to human baselines for eight Al benchmarks corresponding

to 11 tasks (e.g., image classification or basic-level reading
Overall Review comprehension).! The Al Index team selected one benchmark

Last year’s Al Index highlighted that Al had already surpassed to represent each task. This year, the Al Index team added

human performance across many tasks, with only a few newly released benchmarks, such as GPQA Diamond and
exceptions, such as competition-level mathematics and visual MMMU, to showcase the progress of Al systems in tackling
commonsense reasoning. Over the past year, Al systems extremely challenging cognitive tasks.

have continued to improve, exceeding human performance
on several of these previously challenging benchmarks.

Select Al Index technical performance benchmarks vs. human performance
Source: Al Index, 2025 | Chart: 2025 Al Index report

120%
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= |mage classification (ImageNet Top-5) Visual reasoning (VQA)

Medium-level reading comprehension (SQUAD 2.0) === English language understanding (SuperGLUE)
= Multitask language understanding (MMLU) Competition-level mathematics (MATH)
= PhD-level science questions (GPQA Diamond) = Multimodal understanding and reasoning (MMMU)

Figure 2.1.33?

1 An Al benchmark is a standardized test used to evaluate the performance and capabilities of Al systems on specific tasks. For example, ImageNet is a canonical Al benchmark that features

a large collection of labeled images, and Al systems are tasked with classifying these images accurately. Tracking progress on benchmarks has been a standard way for the Al community to
monitor the advancement of Al systems.

2 In Figure 2.1.33, the values are scaled to establish a standard metric for comparing different benchmarks. The scaling function is calibrated such that the performance of the best model for
each year is measured as a percentage of the human baseline for a given task. A value of 105% indicates, for example, that a model performs 5% better than the human baseline
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As of 2024, there are very few task categories where human
ability surpasses Al. Even in these areas, the performance gap
between Al and humans is shrinking rapidly. For example, on
MATH, a benchmark for competition-level mathematics,
state-of-the-art Al systems are now 7.9 percentage points
ahead of human performance, a significant improvement
from the 0.3-point gap in 2024.3 Similarly, on MMMU, a
benchmark for complex, multidisciplinary, expert-level
questions, the best 2024 model, o1, scored 78.2%, only 4.4
points below the human benchmark of 82.6%. Conversely,
at the end of 2023, Google Gemini scored 59.4%, further
illustrating the rapid advancements in Al performance on
cognitively demanding tasks.

Closed vs. Open-Weight Models

Al models can be released with different levels of openness.
Certain models, like Google’s Med-Gemini, remain entirely
closed, accessible only to their developers. Meanwhile,
models such as OpenAl’s GPT-40 and Anthropic’s Claude 3.5
provide limited public access through APls. However, weights
for these models are not released, preventing independent
modification or thorough public scrutiny. In contrast, weights
for Meta’s Llama 3.3 and Stable Video 4D are fully available,
allowing anyone to modify and use them freely.*

Perspectives on open versus closed-weight Al models are
sharply divided. Advocates of open-weight models highlight
their potential to reduce market monopolies, spur innovation,
improve security and robustness, and enhance transparency
within the Al ecosystem. For example, Meta’s Llama models
have been leveraged to create tools like Meditron, power
military applications, and drive the development of numerous
open-weight models worldwide. However, critics warn that

open-weight models pose significant security risks, including
the spread of disinformation and the creation of bioweapons,
arguing for a more cautious and controlled approach.
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Last year’s Al Index highlighted a notable performance gap
between closed and open-weight LLM models. Figure 2.1.34
illustrates the performance trends of the top closed-weight
and open-weight LLMs on the Chatbot Arena Leaderboard,
a public platform for benchmarking LLM performance.
In early January 2024, the leading closed-weight model
outperformed the top open-weight model by 8.0%. By
February 2025, this gap had narrowed to 1.7%.

The same trend is evident across other question-answering
benchmarks. In 2023, closed-weight models consistently
outperformed open-weight counterparts on nearly every
major benchmark—MMLU, HumanEval, MMMU, and MATH.
However, by 2024, the gap had narrowed significantly (Figure
2.1.35). For instance, in late 2023, closed-weight models led
open models on MMLU by 15.9 points, but by the end of
2024, that difference had shrunk to just 0.1 percentage point.
This rapid improvement was largely driven by Meta’s summer
release of Llama 3.1, followed by the launch of other high-
performing open-weight models, such as DeepSeek’s V3.

3 The benchmark data in this figure, along with those in other sections of this chapter, was collected in early January 2025. Since the publication of the Al Index, individual benchmark scores

may have improved.

4 In the software community, “open source” refers to software released under a license that grants users the right to use, study, modify, and distribute both the software and its source code
freely. Open-weight models, though more accessible than closed-weight models, are not necessarily fully open source, as the underlying code or training data is often withheld.
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Performance of top closed vs. open models on LMSYS Chatbot Arena
Source: LMSYS, 2025 | Chart: 2025 Al Index report
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Figure 2.1.34

Performance of top closed vs. open models on select benchmarks
Source: Al Index, 2025 | Chart: 2025 Al Index report
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US vs. China Technical Performance

The United States has historically dominated Al research and
model development, with China consistently ranking second.
Recent evidence, however, suggests the landscape is rapidly
changing and that China-based models are catching up to
their U.S. counterparts.

In 2023, leading American models significantly outperformed
their Chinese counterparts. On the LMSYS Chatbot Arena,
the top U.S. model outperformed the best Chinese model
by 9.3% in January 2024. By February 2025, this gap had
narrowed to just 1.7% (Figure 2.1.36). At the end of 2023,
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on benchmarks such as MMLU, MMMU, MATH, and
HumanEval, the performance gaps were 17.5, 13.5, 24.3, and
31.6 percentage points, respectively (Figure 2.1.37). By the
end of 2024, these differences had narrowed significantly
to just 0.3, 8.1, 1.6, and 3.7 percentage points. The launch
of DeepSeek-R1 garnered attention for another reason: The
company reported achieving its results using only a fraction
of the hardware resources typically required to train such a
model. Beyond impacting U.S. stock markets, DeepSeek’s
R1 launch raised doubts about the effectiveness of U.S.
semiconductor export controls.

Performance of top United States vs. Chinese models on LMSYS Chatbot Arena

Source: LMSYS, 2025 | Chart: 2025 Al Index report

1,400

1,350

1,300

1,250

Score

1,200

1,150

1,100

1,385, United States

2 2 2
0 » 02, 02,
"

4 3 90<°<z~ ?094
6 /I"er o

.

Y

O Table of Contents

9 Chapter 2 Preview

2 2 2 2 2
Q2. Y Q2. Y 094\4 Q2. s 0?4\0
(7 (74 l/g S

2 2 2 2
094\,,/ %, %25, "%
oy Se

R4 Yar) )

Figure 2.1.36



https://arxiv.org/abs/2412.04486
https://api-docs.deepseek.com/news/news250120
https://www.reuters.com/technology/chinas-deepseek-sets-off-ai-market-rout-2025-01-27/
https://www.brookings.edu/articles/deepseek-shows-the-limits-of-us-export-controls-on-ai-chips/

Chapter 2: Technical Performance
2.1 Overview of Al in 2024

| I Artificial Intelligence
HI Index Report 2025

Performance of top United States vs. Chinese models on select benchmarks

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Improved Performance From Smaller Models

Recent Al progress has been driven by scaling—the idea
that increasing model size and training data improves
performance. While scaling has significantly boosted Al
capabilities, a notable recent trend is the emergence of
smaller high-performing models. Figure 2.1.38 illustrates the
reduction in size of the smallest model that scores above 60%
on MMLU, a widely used language model benchmark. For
context, early models powering ChatGPT, such as GPT-3.5
Turbo, scored around 70% on MMLU. In 2022, the smallest
model surpassing 60% on MMLU was PaLM, with 540 billion
parameters. By 2024, Microsoft’s Phi-3 Mini, with just 3.8
billion parameters, achieved the same threshold, marking a

142-fold reduction in model size over two years.
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2024 was a breakthrough year for smaller Al models. Nearly
every major Al developer released compact, high-performing
models, including GPT-40 mini, o1-mini, Gemini 2.0 Flash,

Llama 3.1 8B, and Mistral Small 3.° The rise of small models
is significant for several reasons. It demonstrates increasing
algorithmic efficiency, allowing developers to achieve more
with less data and at lower training cost. These efficiency
gains, combined with growing datasets, could lead to
even higher-performing models. Additionally, inference on
smaller models is typically faster and less expensive. Their
emergence also lowers the barrier to entry for Al developers
and businesses looking to integrate Al into their operations.

Smallest Al models scoring above 60% on MMLU, 2022-24

Source: Abdin et al., 2024 | Chart: 2025 Al Index report
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Model Performance Converges at the Frontier

In recent years, Al model performance at the frontier has
converged, with multiple providers now offering highly
capable models. This marks a shift from late 2022, when
ChatGPT’s launch—widely seen as Al's breakthrough
into public consciousness—coincided with a landscape
dominated by just two major players: OpenAl and Google.
OpenAl, founded in 2015, released GPT-3 in 2020, while
Google introduced models like PaLM and Chinchilla in 2022.

Since then, new players have entered the scene, including
Meta with its Llama models, Anthropic with Claude, High-
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Flyer's DeepSeek, Mistral’s Le Chat, and xAl with Grok.
As competition has intensified, model performance has
increasingly converged (Figure 2.1.39). According to last year’s
Al Index, the performance gap between the highest- and
10th-ranked models on the Chatbot Arena Leaderboard—a
widely used Al ranking platform—was 11.9%. By early 2025, it
had narrowed to 5.4%. Similarly, the difference between the
top two models fell from 4.9% in 2023 to just 0.7% in 2024.
The Al landscape is becoming more competitive, validating
2023 predictions that Al companies lack a technological
moat to shield them from rivals.

Performance of top models on LMSYS Chatbot Arena by select providers

Source: LMSYS, 2025 | Chart: 2025 Al Index report
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Benchmarking Al

For years, the Al Index has used benchmarks to monitor the
technical progress of Al systems over time. While benchmarks
remain a key tool in this effort, it is important to acknowledge
their limitations and guide the community toward more
effective benchmarking practices.

Asnotedinlastyear’s Al Index, many prominent Al benchmarks
are reaching saturation. With Al systems advancing rapidly,
even newly designed, more challenging tests often remain
relevant for only a few years. Some experts suggest that the
era of new academic benchmarks may be coming to an end.
To truly assess the capabilities of Al systems, more rigorous
and comprehensive evaluations are needed.

Additionally, when model developers release new models, they
typically report benchmark scores, which are often accepted at
face value by the broader community. However, this approach
has flaws. In some cases, companies use nonstandard
prompting techniques, making model-to-model comparisons
unreliable. For example, when Google launched Gemini Ultra,
it reported an MMLU benchmark score using a chain-of-
thought prompting technique that other developers did not
use. Additionally, third-party researchers have documented
cases where models perform worse in independent testing
compared with the results first reported by their developers.

There are critical aspects of intelligence that do not easily
lend themselves to benchmarking. Benchmarks are effective
for evaluating certain intelligent capabilities, such as vision
and language, where tasks are discrete—e.g., classifying an
image correctly or answering a multiple-choice question.
However, developing benchmarks is more challenging in
areas of Al such as multi-agent systems and human-Al
interaction because of factors including the variability in
human behaviors and the sheer diversity of correct answers.

In addition, Al advances have traditionally been evaluated in
competitions designed to measure human performance, such
as games and other open challenges posed to humans or
machines. Games such as chess and poker involve significant
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intelligence, and Al systems have improved over the decades
to the point of defeating the best humans at increasingly
complex games. Games with a physical component or team
capabilities are also a good measure of progress for Al, and
the robotics community has embarked on challenging game
competitions such as RoboCup for soccer-playing robots.
Another area of Al where competitions are used involves
coordination and teamwork where multi-agent systems
demonstrate advances in distributed reasoning.

Benchmarks have been developed by the Al community
for a very long time. Significant advances in Al have been
possible because different approaches and methods could
be evaluated against the same gold standard represented
by a benchmark. In machine learning, benchmarks with
different kinds of data in diverse domains have enabled
significant advances. Many of these benchmarks are
evaluated automatically by a third party without releasing the
test data to the Al developers, which makes the evaluations
more trustworthy. One interesting recent trend is that
various benchmark tasks are addressed by the same model.
For example, natural language was addressed for many
years as a collection of separate tasks (e.g., understanding,
generation, question answering), each with its own models
and each with its own benchmarks. Similarly, speech tasks
were benchmarked separately from language understanding
or generation tasks. Today, the same model can address
all language tasks, and, in some cases, a single model can
address language, images, and multimodal tasks. This is a
very important Al advance concerning the integration of
otherwise separate intelligent tasks and capabilities.

The rapid progress of Al systems, evidenced by their consistent
outperformance on benchmarks, is perhaps best illustrated
by the diminishing relevance of the well-known and long-
standing challenge for Al: the Turing test. Originally proposed
in Alan Turing’s 1950 paper “Computing Machinery and

Intelligence,” the test evaluates a machine’s ability to exhibit
humanlike intelligence. In it, a human judge engages in a text-
based conversation with both a machine and a human; if the
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judge cannot reliably distinguish between them, the machine
is said to have passed the Turing test. Recent evidence
suggests that LLMs have advanced so significantly that people
struggle to differentiate the best-performing language models
from a human, signaling that modern Al models can pass the

Turing test. While the merits and shortfalls of this test have
long been debated, it remains an important historical and
cultural benchmark for machine intelligence. The questioning
of its relevance highlights the remarkable progress of LLMs in
recent years and the evolving perception of effective computer
science benchmarks and Al measurement.

In robotics, many models have emerged that address
interacting with the physical world and reasoning about natural
laws. A number of robotics benchmarks, such as ARMBench,
focus on perception tasks. However, other benchmarks, such
as VIMA-Bench, assess robot performance in simulated
environments where they simultaneously incorporate
perception, communication, and deep learning.

Benchmarks can also suffer from contamination, where LLMs
encounter test questions that were present in their training
data. A recent study by Scale found significant contamination
in the performance of many LLMs on GSM8K, a widely
used mathematics benchmark. Some researchers have
sought to combat these contamination issues by introducing
benchmarks like LiveBench, which are periodically updated

Five stages of the benchmark lifecycle
Source: Reuel et al., 2024
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with new questions from unfamiliar sources that LLMs are
unlikely to have seen in their training data.

Lastly, research has shown that many benchmarks are poor-
ly constructed. In BetterBench, researchers systematically
analyzed 24 prominent benchmarks and identified systemic
deficiencies: 14 failed to report statistical significance, 17
lacked scripts for result replication, and most suffered from
inadequate documentation, limiting their reproducibility and
effectiveness in evaluating models. Despite widespread use,
benchmarks like MMLU demonstrated poor adherence to
quality standards, while others, such as GPQA, performed
significantly better. To address these issues, the paper pro-
posed a 46-criteria framework covering all phases of bench-
mark development—design, implementation, documenta-
tion, and maintenance (Figure 2.1.40). It also introduced a
publicly accessible repository to enable continuous updates
and improve benchmark comparability. Figure 2.1.41, from
BetterBench, assesses many prominent benchmarks on their
usability and design. These findings underscore the need for
standardized benchmarking to ensure reliable Al evaluation
and to prevent misleading conclusions about model per-
formance. Benchmarks have the potential to shape policy
decisions and influence procurement decisions within or-
ganizations highlighting the importance of consistency and
rigor in evaluation.

Figure 2.1.40
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Design vs. usability scores across select benchmarks
Source: Reuel et al., 2024 | Chart: 2025 Al Index report
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In this chapter, the Al Index continues to report on
benchmarks, recognizing their importance in tracking Al’s
technical progress. As a standard practice, the Index sources
benchmark scores from leaderboards, public repositories
such as Papers With Code and RankedAGl, as well as
company papers, blog posts, and product releases. The Index
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Figure 2.1.41

operates under the assumption that the scores reported by
companies are accurate and factual. The benchmark scores
in this section are current as of mid-February 2025. However,
since the publication of the Al Index, newer models may have
been released that surpass current state-of-the-art scores.
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2.2 Language

Natural language processing (NLP) enables computers to A sample output from GPT-40
understand, interpret, generate, and transform text. Current Source: Allndex, 2026

state-of-the-art models, such as OpenAl’s GPT-40, Anthropic’s

Claude 3.5, and Google’s Gemini, are able to generate fluent

and coherent prose and display high levels of language

understanding ability (Figure 2.2.1). Unlike earlier versions,

which were restricted to text input and output, newer language

models can now reason across a growing range of input and

output modalities, including audio, images, and goal-oriented

tasks (Figure 2.2.2).

Figure 2.2.1

Gemini 2.0 in an agentic workflow
Source: Al Index, 2025

Figure 2.2.2
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Understanding

English language understanding challenges Al systems to
understand the English language in various ways, such as
reading comprehension and logical reasoning.

MMLU: Massive Multitask Language Understanding
The Massive Multitask Language Understanding (MMLU)

benchmark assesses model performance in zero-shot or few-
shot scenarios across 57 subjects, including the humanities,
STEM, and the social sciences (Figure 2.2.3). MMLU has
emerged as a premier benchmark for assessing LLM
capabilities: Many state-of-the-art models like GPT-40, Claude
3.5, and Gemini 2.0 have been evaluated against MMLU.

A sample question from MMLU

Source: Hendrycks et al., 2021
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The MMLU benchmark was created in 2020 by a team of
researchers from UC Berkeley, Columbia University, University
of Chicago, and University of lllinois Urbana-Champaign.

The highest recorded score on MMLU, 92.3%, was achieved
by OpenAl’s ol-preview model in September 2024. For
comparison, GPT-4, launched in March 2023, scored 86.4%
on the benchmark. Notably, one of the earliest models
tested on MMLU, RoBERTa, achieved just 27.9% in 2019
(Figure 2.2.4). This latest state-of-the-art result represents a
remarkable 64.4 percentage point increase over five years.

0%

Figure 2.2.3
MMLU: average accuracy
Source: Papers With Code, 2025 | Chart: 2025 Al Index report
89.8%, human baseline 92.30%
2019 2020 2021 2022 2023 2024
Figure 2.2.4
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Despite its prominence, MMLU has faced notable criticisms. Generation

These include claims that the benchmark contains erroneous

or overly simplistic questions, which may not challenge . . .
. . In generation tasks, Al models are tested on their ability to
increasingly advanced systems. In 2024, ateam of researchers 4 Auent and tical |
. . . . roduce fluent and practical language responses.
from the University of Toronto, University of Waterloo, and P P guag P

Carnegie Mellon introduced MMLU-Pro, a more challenging Chatbot Arena Leaderboard

variant of MMLU. This version eliminates noisy and trivial
Y The rise of capable LLMs has made it increasingly important

uestions, expands complex ones, and increases the number .
a P P to understand which models are preferred by the general

public. Launched in 2023, the Chatbot Arena Leaderboard
from LMSYS is one of the first comprehensive evaluations

of answer choices available to models. Figure 2.2.5 highlights
performance trends on MMLU-Pro, with DeepSeek-R1

osting the highest score to date (84.0%).
P ° ° ( ) of public LLM preference. The leaderboard allows users to

. . . query two anonymous models and vote for the preferred
Additionally, concerns have been raised about the testing

. generations (Figure 2.2.6). By early 2025, the platform had
landscape. Developers sometimes report MMLU scores

using nonstandard prompting techniques that boost
performance but can lead to misleading comparisons.

accumulated over 1 million votes, with users ranking one of
Google’s Gemini models as the community’s most preferred

choice.

Furthermore, evidence suggests that publicly reported scores
by developers can differ—sometimes by as much as five
percentage points—from those later evaluated by academic
researchers. As such, MMLU performance results should be
interpreted with caution.
MMLU-Pro: overall accuracy
Source: MMLU-Pro Leaderboard, 2025 | Chart: 2025 Al Index report
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A sample model response on the Chatbot Arena Leaderboard
Source: Chatbot Arena Leaderboard, 2024

Figure 2.2.6
Figure 2.2.7 provides a snapshot of the top 10 models on the Al Index, the difference in Arena scores between the top
Chatbot Arena Leaderboard as of January 2025. Interestingly, model and the 10th-ranked model was 11.9%.5 By 2025, this
the performance gap between top leaderboard models has gap had decreased to just 5.4%. This convergence highlights
narrowed over time. In 2023, according to data from the 2024 a growing parity in the quality of recent LLMs.
LMSYS Chatbot Arena for LLMs: Elo rating (overall)
Source: LMSYS, 2025 | Chart: 2025 Al Index report
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6 The Arena score is a relative ranking system used by the Arena Leaderboard to compare model performance. For more details on the scoring methodology, refer to the paper introducing
the Chatbot Arena Leaderboard.
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Arena-Hard-Auto

One of the challenges in developing new benchmarks to keep
pace with rapidly improving Al capabilities is that creating
high-quality, human-curated benchmarks is often expensive
and time-consuming. In response, this year saw the launch of
BenchBuilder. Created by a team of UC Berkeley researchers,
BenchBuilder leverages LLMs to create an automated
pipeline for curating high-quality, open-ended prompts from
large, crowdsourced datasets. BenchBuilder can be used
to update or create new benchmarks without significant
human involvement. This tool was used by the LMSYS team
to develop Arena-Hard-Auto, a benchmark designed to
evaluate instruction-tuned LLMs (Figure 2.2.8). Arena-Hard-
Auto includes 500 challenging user queries sourced from
Chatbot Arena.
the judge that compares model responses against a baseline
model (GPT-4-0314).

In this benchmark, GPT-4 Turbo serves as

As of November 2024, the top-scoring models on the Arena-
Hard-Auto leaderboard were ol-mini (92.0), ol-preview
(90.4), and Claude-3.5-Sonnet (85.2) (Figure 2.2.9). Arena-
Hard-Auto also features a style control leaderboard, which

Arena-Hard-Auto with no modification
Source: LMSYS, 2025 | Chart: 2025 Al Index report
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Arena-Hard-Auto vs. other benchmarks
Source: Li et al., 2024

Figure 2.2.8

accounts for how the style of an LLM’s responses might
inadvertently influence user preferences. The top model on
the style leaderboard is the November variant of Anthropic’s
Claude Sonnet 3.5 (Figure 2.2.10). Automated benchmarks
like Arena-Hard-Auto have faced criticism for uneven
question distribution, which limits their ability to provide a
comprehensive assessment of LLM capabilities. For instance,
over 50% of Arena-Hard-Auto questions focus solely on
coding and debugging.

Arena-Hard-Auto with style control
Source: LMSYS, 2025 | Chart: 2025 Al Index report
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WildBench

WildBench, developed by researchersfromthe Allen Institute
for Al and the University of Washington, is a benchmark
launched in 2024 to evaluate LLMs on challenging real-
world queries. The creators highlight several limitations
of existing LLM evaluations. For example, MMLU focuses

Evaluation framework for WildBench
Source: Lin et al., 2024
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on academic questions and does not assess open-ended,
real-world problems. Similarly, benchmarks like LMSYS,
which address real-world challenges, rely heavily on human
oversight and lack consistency in evaluating all models with
the same dataset.

Figure 2.2.11
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https://allenai.github.io/WildBench/WildBench_paper.pdf

Chapter 2: Technical Performance
2.2 Language

WildBench addresses many shortcomings of existing
benchmarks by providing an automated evaluation framework
for LLMs, incorporating a diverse set of real-world (“in the
wild”) questions that language models are likely to encounter
(Figure 2.2.11). The questions in WildBench are meticulously
selected from over 1 million human-chatbot interactions and

WildBench: WB-Elo (length controlled)

Source: WildBench Leaderboard, 2025 | Chart: 2025 Al Index report
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are periodically updated to ensure relevance. The creators
also maintain a live leaderboard to track model performance
over time. Currently, the top-performing model on WildBench
is GPT-40, with an Elo score of 12271, narrowly surpassing the
second-place model, Claude 3.5 Sonnet, which scored 1215.4
(Figure 2.2.12).
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Highlight:

o1, 03, and Inference-Time Compute

OpenAl’s latest two models, o1 and 03, mark a paradigm
shift in Al models’ ability to “think” and exhibit signs of
advanced reasoning. o1 and 03 have shown impressive
results across a variety of tasks, including programming,
quantum physics, and logic. The models’ advanced
reasoning capabilities are attributed to their chain-of-
thought process and ability to iteratively check answers.
This means that the models break complex problems into

Chain-of-thought thinking in o1

Source: OpenAl, 2024

9 Chapter 2 Preview

smaller, more manageable steps before executing them,
enhancing the resulting output quality. For example,
when asked to decipher scrambled text, o1 will specify its
thought and reasoning process more thoroughly than GPT-
4 (Figure 2.2.13). This process, through which Al systems
iterate as they answer, has been referred to as inference or
test-time computation.

Figure 2.2.13



https://openai.com/o1/
https://x.com/gdb/status/1870176891828875658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1870176891828875658%7Ctwgr%5E129df87f7f0e1344e9025f23aeaad6fe18332c0f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcdn.embedly.com%2Fwidgets%2Fmedia.html%3Ftype%3Dtext2Fhtmlkey%3Da19fcc184b9711e1b4764040d3dc5c07schema%3Dtwitterurl%3Dhttps3A%2F%2Fx.com%2Fgdb%2Fstatus%2F18701768918288756583Fref_src3Dtwsrc255Etfw257Ctwcamp255Etweetembed257Ctwterm255E1870176891828875658257Ctwgr255E0e1cf1afe60066e9d25f76596371f7f979adf318257Ctwcon255Es1_26ref_url3Dhttps253A252F252Ftechcrunch.com252F2024252F12252F20252Fopenai-announces-new-o3-model252Fimage%3D
https://openai.com/index/learning-to-reason-with-llms/

Artificial Intelligence
Index Report 2025

[Az

Chapter 2: Technical Performance
2.2 Language

Highlight:

o1, 03, and Inference-Time Compute (cont’d)

Figure 2.2.14 juxtaposes the scores of GPT-40, OpenAl’s
previous state-of-the-art model, with o1 and o1-preview on
avariety of benchmarks.” Forexample, o1 outperforms GPT-
40 with a 2.8-point gain on MMLU, 34.5 points on MATH,
26.7 points on GPQA Diamond, and 65.1 points on AIME

GPT-40 vs. o1-preview vs. o1 on select benchmarks
Source: OpenAl, 2024 | Chart: 2025 Al Index report

2024, a notoriously difficult mathematics competition.
Finally, 03 demonstrates more complex reasoning than any
other Al model known today, posting an 87.5% accuracy
rate on the ARC-AGI machine intelligence benchmark and
passing the previous record of 55.5%.

MMLU MATH
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20% 20% 9.30%
0% 0%
GPT-40 ol-preview ol GPT-40 ol-preview ol
Figure 2.2.14

While these models enhance reasoning capabilities, this
comes at a price—both a financial and latency cost. For
example, GPT-40 costs $2.50 per 1 million input tokens
and $10 per 1 million output tokens. Conversely, o1 costs
$15 per 1 million input tokens and $60 per 1 million output
tokens.® Moreover, o1 is approximately 40 times slower
than GPT-40, with 29.7 seconds to first token as opposed
to GPT-40’s 0.72. The latency of 03, while not publicly

available, is presumably even higher. o1 and 03’s strong
capabilities are likely to continue fueling powerful Al
systems and agents.

OpenAl first released ol-preview to ChatGPT Plus and
Teams users on Sept. 12,2024, and released the full version
of o1 (as well as access to ChatGPT Pro, a $200 monthly
subscription enabling access to o1) on Dec. 5, 2024.

7 The o1-preview model is OpenAl’s early release of 01, made available before its broader public launch.

8 03 is currently only available to select researchers and developers via OpenAl’s safety testing program.
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MixEval

MixEval, launched by researchers at the National University of
Singapore, Carnegie Mellon University, and the Allen Institute
for Al,
address some of the aforementioned limitations in the current

is another newly released benchmark designed to

field of LLM evaluation. MixEval combines comprehensive,
well-distributed, real-world user queries, similar to those found

Evaluation framework for MixEval
Source: Ni et al., 2024

The highest-scoring model on the MixEval-Hard benchmark
is OpenAl’s ol-preview, with a score of 72.0. In second
place is the Claude 3.5 Sonnet-0620 model, followed by the

MixEval-Hard on chat models: score
Source: MixEval Leaderboard, 2025 | Chart: 2025 Al Index report
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in Chatbot Arena, with ground-truth-based questions, like those
featured in MMLU (Figure 2.2.15). MixEval includes various
evaluation suites, with MixEval-Hard representing the more
challenging version of the benchmark. This suite focuses on
substantially harder queries, making it one of the most effective
tools for assessing how models handle complex questions.

Figure 2.2.15

Llama-3 1-405B-Instruct model, which scored 66.2 (Figure
2.2.16). All three models were released in 2024.
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RAG: Retrieval Augment Generation (RAG)

An increasingly common capability being tested in LLMs
is retrieval-augmented generation (RAG). This approach
integrates LLMs with retrieval mechanisms to enhance
their response generation. The model first retrieves relevant
information from files or documents and then generates a
response tailored to the user’s query based on the retrieved
content. RAG has diverse use cases, including answering
precise questions from large databases and addressing
customer queries using information from company documents.

In recent years, RAG has received increasing attention from
researchers and companies. For example, in September
2024, Anthropic introduced Contextual Retrieval, a method
that significantly enhances the retrieval capabilities of RAG

models. 2024 also saw the release of numerous benchmarks
for evaluating RAG systems, including Ragnarok (a RAG
arena battleground) and CRAG (Comprehensive RAG
benchmark). Additionally, specialized RAG benchmarks, such
as FinanceBench for financial question answering, have been
developed to address specific use cases.

Berkeley Function Calling Leaderboard

The Berkeley Function Calling Leaderboard evaluates the
ability of LLMs to accurately call functions or tools. The

evaluation suite includes over 2,000 question-function-
answer pairs across multiple programming languages (such
as Python, Java, JavaScript, and REST API) and spans a
variety of testing domains (Figure 2.2.17).

Data composition on the Berkeley Function Calling Leaderboard

Source: Yan et al., 2024

Figure 2.2.17°

9 In this context: AST (abstract syntax tree) refers to tasks that involve analyzing or manipulating code at the structural level, using its parsed representation as a tree of syntactic elements.
Evaluations labeled with “AST” likely test an Al model’s ability to understand, generate, or manipulate code in a structured manner. Exec (execution-based) indicates tasks that require actual
execution of function calls to verify correctness. Evaluations labeled with “Exec” likely assess whether the Al model can correctly call and execute functions, ensuring the expected outputs

are produced.
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The top model on the Berkeley Function Calling Leaderboard score of 72.08. Performance on this benchmark has improved
is watt-tool-70b, a fine-tuned variant of Llama-3.3-70B- significantly over the course of 2024, with top models at the
Instruct designed specifically for function calling. It achieved end of the year achieving accuracies up to 50 points higher
an overall accuracy of 74.31 (Figure 2.2.18). The next-highest- than those recorded early in the year.

scoring model was a November variant of GPT-40, with a

Berkeley Function-Calling: overall accuracy
Source: Berkeley Function-Calling Leaderboard, 2025 | Chart: 2025 Al Index report
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MTEB: Massive Text Embedding Benchmark
The Massive Text Embedding Benchmark (MTEB), created
by a team at Hugging Face and Cohere, was introduced in

late 2022 to comprehensively evaluate how models perform
on various embedding tasks. Embedding involves converting
data, such as words, texts, or documents, into numerical
vectors that capture rough semantic meanings and distance
between vectors. Embedding is an essential component of
RAG. During a RAG task, when users input a query, the model

Tasks in the MTEB benchmark

Source: Muennighoff et al., 2023
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transforms it into an embedding vector. This transformation
enables the model to then search for relevant information.
MTEB includes 58 datasets spanning 112 languages and
eight embedding tasks (Figure 2.2.19).° For example, in the
bitext mining task, there are two sets of sentences from two
different languages, and for every sentence in the first set,
the model is tasked to find the best match in the second set.

Figure 2.2.19

10 The benchmark covers the following eight tasks: bitext mining, classification, clustering, pair classification, reranking, retrieval, semantic textual similarity, and summarization. For details on

each task, refer to the MTEB paper.
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As of early 2025, the top-performing embedding model on the
MTEB benchmark was Voyage Al’s voyage-3-m-exp, with a
score of 74.03. Voyage Al is focused on creating high-quality
Al embedding models. The voyage-3-m-exp model is a variant
of the voyage-3-large, a large foundation model specifically
designed for embedding tasks, and it uses strategies like

Matryoshka Representation Learning and quantization-aware
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training to improve its performance. The voyage-3-m-exp
model narrowly outperformed NV-Embed-v2 (72.31), which
held the top spot for most of 2024 (Figure 2.2.20). When
the MTEB benchmark was first introduced in late 2022, the
leading model achieved an average score of 59.5. Over the
past two years, therefore, performance on the benchmark
has meaningfully improved.

MTEB on English subsets across 56 datasets: average score

Source: MTEB Leaderboard, 2025 | Chart: 2025 Al Index report
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Highlight:
Evaluating Retrieval Across Long Contexts

As Al models have advanced, their ability to handle longer  pyLER: weighted average score (increasing)
contexts has significantly improved. For example, models  Source: Hsieh et al., 2024 | Chart: 2025 Al Index report
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as GPT-40 (May 2024) and Gemini 2.0 Pro Experimental

(February 2025) boast context windows ranging from 128
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these evaluations focus on “needle-in-the-haystack”
scenarios, where models are tasked with retrieving specific Model
pieces of information from lengthy texts. While useful, such Figure 2.2.21

evaluations provide only a baseline assessment of a model’s

RULER: claimed vs. effective context length

ability to function effectively in long-context environments. g ce: Hisioh et al., 2024 | Chart: 2025 Al Index report
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In 2024, several new evaluation suites were introduced to ™
address the limitations of long-context model assessments

and improve their evaluation. One such benchmark is 800K]
Nvidia’s RULER, which assesses long-context performance
by examining retrieval performance and multihop reasoning, 600K
aggregation, and question answering. Among the models

evaluated on RULER, Gemini-1.5-Pro achieved the highest 400K

Context length

weighted performance average (95.5), followed by GPT-
4 (89.0) and GLM4(88.0) (Figure 2.2.21). The researchers 200K
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(Figure 2.2.22).
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Highlight:

Evaluating Retrieval Across Long Contexts (cont’d)

HELMET (How to Evaluate Long-Context Models

Effectively and Thoroughly), an Intel and Princeton

collaboration, is another long-context evaluation
benchmark introduced in 2024. The researchers behind
HELMET were motivated by the inadequacies of existing
benchmarks, which suffered from insufficient coverage
of downstream tasks, context lengths too short to
test evolving long-context capabilities, and unreliable
metrics (Figure 2.2.23). Even more comprehensive than
RULER, HELMET features seven long-context evaluation

categories, including synthetic recall, passage re-ranking,

Comparing long-

context benchmarks
Source: Yen et al., 2024
Figure 2.2.23

HELMET: average score

Source: Yen et al., 2024 | Chart: 2025 Al Index report

and generation with citations. Figure 2.2.24 illustrates
the average performance of several notable models
on the HELMET benchmark across 8K, 32K, and 128K
context settings. While models like GPT-4, Claude 3.5
Sonnet, and Llama 3.1-70B struggle with performance
degradation in longer context settings, others, such as
Gemini 1.5 Pro and the August variant of GPT-4, maintain
their effectiveness. The introduction of benchmarks like
RULER and HELMET highlights how the rapid evolution
of LLMs is compelling researchers to rethink and refine
evaluation methodologies.
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Computer vision allows machines to understand images and
videos and to create realistic visuals from textual prompts
or other inputs. This technology is widely used in fields such
as autonomous driving, medical imaging, and video game
development.

2.3 Image and Video

Understanding

Vision models are evaluated on their ability to understand
and reason about the content of images and videos. Vision
understanding was one of the first Al capabilities widely
tested during the deep learning era. ImageNet, created by
Fei-Fei Li and extensively covered in past editions of the
Al Index, served as a foundational benchmark for image
understanding. As Al systems have advanced, researchers
have shifted toward evaluating image models on more
complex and comprehensive understanding tasks, such as
those involving video or commonsense reasoning in images.

In the ImageNet era, vision algorithms were tasked with more
straightforward tasks (e.g., classifying images into predefined
categories). However, modern computer vision benchmarks
like VCR and MVBench introduce more open-ended
challenges, where no fixed categories or classes exist. In
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these cases, algorithms process natural language questions,
identify objects from an open set of images, and generate
answers based on image content or prior knowledge.

VCR: Visual Commonsense Reasoning

Introduced in 2019 by researchers from the University
of Washington and the Allen Institute for Al, the Visual
Commonsense Reasoning (VCR) challenge tests the

commonsense visual reasoning abilities of Al systems. In this
challenge, Al systems not only answer questions based on
images but also reason about the logic behind their answers
(Figure 2.3.1). Performance in VCR is measured using the
Q->AR score, which evaluates the machine’s ability to both
select the correct answer to a question (Q->A) and choose
the appropriate rationale behind that answer (Q->R).

Sample question from Visual Commonsense Reasoning (VCR) challenge

Source: Zellers et al., 2018
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The VCR benchmark was one of the few benchmarks routinely
featured in the Al Index where Al systems consistently
fell short of the human baseline. However, 2024 marked a
turning point, with Al systems finally reaching this baseline.
A model posted to the leaderboard in July 2024 achieved a

| I Artificial Intelligence
HI Index Report 2025

score of 85.0, matching the human benchmark (Figure 2.3.2).
This milestone represented a significant 4.2% improvement
on the benchmark since 2023. Even previously challenging
benchmarks are now being surpassed.

Visual Commonsense Reasoning (VCR) task: Q->AR score

Source: VCR Leaderboard, 2025 | Chart: 2025 Al Index report

85, human baseline
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Figure 2.3.2
MVBench Sample tasks on
MVBench, introduced by a team of researchers MVBench
. . . . Source: Li et al., 2023
from Hong Kong and China in 2023, is a challenging, Figure 2.3.3

multimodal, video-understanding benchmark."
Unlike earlier video benchmarks that primarily
tested spatial understanding through static image
tasks, MVBench incorporates more complex video
tasks requiring temporal reasoning across multiple
frames (Figure 2.3.3).

11 The researchers were affiliated with the Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai Al Laboratory, the University of Hong Kong, Fudan University,

and Nanjing University.
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As of 2024, the top model on the MVBench leaderboard is late 2023 (Figure 2.3.4). These results highlight the gradual
Video-CCAM-7B-v1.2, built on the Queen 2.5-7B-Instruct but steady progress in the dynamic video understanding
language model. Its score of 69.23 marks a significant 14.6% capabilities of Al models.

improvement on the benchmark since its introduction in

MVBench: average accuracy
Source: MVBench Leaderboard, 2025 | Chart: 2025 Al Index report
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Generation

Image generation is the task of generating images that are Which face is real?
Source: Which Face Is Real, 2024

indistinguishable from real ones. As noted in last year’s Al
Index, today’s image generators are so advanced that most
people struggle to differentiate between Al-generated images
and actual images of human faces (Figure 2.3.5). Figure 2.3.6
highlights several generations from various Midjourney model
variants from 2022 to 2025 for the prompt “a hyper-realistic
image of Harry Potter” The progression demonstrates the
significant improvement in Midjourney’s ability to generate
hyper-realistic images over a two-year period. In 2022, the
model produced cartoonish and inaccurate renderings of
Harry Potter, but by 2025, it could create startlingly realistic Figure 2.3.5
depictions.

Midjourney generations over time: “a hyper-realistic image of Harry Potter”
Source: Midjourney, 2024

V1, February
2022

V2, April 2022 V3, July 2022

V4, November 2022 V5, March 2023

V6, December 2023

V6.1, July 2024

Figure 2.3.6
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Chatbot Arena: Vision

The Al community has increasingly embraced public
evaluation platforms, such as the Chatbot Arena
Leaderboard, to assess the capabilities of leading
Al systems, including top Al image generators. This
leaderboard also features a Vision Arena, which ranks
the performance of over 50 vision models. Users
can submit text-to-image prompts, such as “Batman
drinking a coffee,” and vote for their preferred
generation (Figure 2.3.7). To date, the Vision Arena has
garnered more than 150,000 votes.

As of early 2025, the top-ranked vision model on the
leaderboard is Google’s Gemini-2.0-Flash-Thinking-
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Sample from the Chatbot Vision Arena
Source: Chatbot Arena Leaderboard, 2025

Figure 2.3.7

Exp-1219 (Figure 2.3.8). Similar to other Chatbot Arena
categories—such as general, coding, and math—the
leading models are closely clustered in performance.
For example, the gap between the top model and the
fourth-ranked model, ChatGPT-4o0-latest (2024-11-
20), is just 3.4%.
LMSYS Chatbot Arena for LLMs: Elo rating (vision)
Source: LMSYS, 2025 | Chart: 2025 Al Index report
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Highlight:
The Rise of Video Generation

As highlighted in last year’s Al Index, recent years have
witnessed the rise of video generation models capable of
creating videos from text prompts. While earlier models
demonstrated some promise, they were plagued by
significant limitations, such as producing low-quality
videos, omitting sound, or generating only very short
clips. However, 2024 marked a significant leap forward in
Al video generation, with several major industry players
unveiling advanced video generation systems.

In November 2023, Stability Al launched its Stable Video
Diffusion model, their first foundation model capable of
generating high-quality videos (Figure 2.3.9). The model

Still generations from Stable Video Diffusion
Source: Stability Al, 2025

Still generation from Sora
Source: OpenAl, 2024

9 Chapter 2 Preview

follows a three-step process: text-to-image pretraining,
video pretraining, and high-quality video fine-tuning.
Shortly after, in March, Stability Al introduced Stable

Video 3D, a model designed to generate multiple 3D views

and videos of an object from a single image. In February
2024, OpenAl responded with a preview of Sora, its own
video generation model, which moved out of research
mode and became publicly accessible in December 2024.
Sora can generate 20-second videos at resolutions up to
1080p (Figure 2.3.10). As a diffusion model, it creates a
base video and progressively refines it by removing noise
over multiple steps to enhance quality.

Figure 2.3.9

Figure 2.3.10



https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets
https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets
https://stability.ai/news/introducing-stable-video-3d
https://stability.ai/news/introducing-stable-video-3d
https://openai.com/index/sora/
https://openai.com/index/sora-is-here/
http://stability.ai
https://www.nytimes.com/2024/02/15/technology/openai-sora-videos.html
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Highlight:
The Rise of Video Generation (cont’d)

Other major tech players have entered the video generation  Veo 2: overall preference

. . S : Di Mind, 2024 | Chart: 2025 Al Ind t
space. In October 2024, Meta unveiled the latest version of ~ ~°°® ZeePHn | Char Ml

its Movie Gen model. Unlike earlier iterations, the new Movie B Veo preferred Ties M Other preferred

Gen includes advanced instruction-based video editing 100%

features, personalized video generation from images, and
the ability to incorporate sound into videos. Meta’s most 30.60% 26.70%

80%

30.30%
advanced Movie Gen model can create 16-second videos at

16 frames per second, with a resolution of 1080p. Google also
made significant strides in 2024, launching two major video

o
o
X

generation models: Veo in May and Veo 2 in December.

Internal benchmarking by Google revealed that Veo 2 205

Overall preference

outperformed other leading video generators, such as Meta’s
Movie Gen, Kling v1.5, and Sora Turbo. In user comparisons,
videos generated by Veo 2 were consistently favored over 20%
those produced by competing models (Figure 2.3.11).

0%
Meta Movie Gen Kling v1.5 Minimax Sora Turbo

Figure 2.3.11

Smaller players have also made notable contributions to video generation, with models such as Runway’s Gen-3 Alpha,
Luma’s Dream Machine, and Kuaishou’s Kling 1.5. The remarkable progress in this field is evident when comparing
videos generated in 2023 to those produced in 2024. A popular prompt on the internet, “Will Smith eating spaghetti,”
demonstrates this advancement, with videos generated in 2025 from one popular video generator Pika showcasing a
dramatic improvement in quality compared to their 2023 counterparts (Figure 2.3.12).

Will Smith eating spaghetti, 2023 vs. 2025

Source: Pika, 2025

V1.0
December
2023

V1.5
October
2024

Va.2
February
2025

Figure 2.3.12
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https://runwayml.com/research/introducing-gen-3-alpha
https://lumalabs.ai/dream-machine
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https://klingai.com/?gad_source=1&gclid=Cj0KCQiAhbi8BhDIARIsAJLOluejMHuEHcVZOSRoHU-BallOYFOTlWCB8KfiYHt82jukzsxBvgWeMykaAooxEALw_wcB
https://pikartai.com/
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Al systems are adept at processing human speech, with
audio capabilities that include transcribing spoken words to
text and recognizing individual speakers. More recently, Al
has advanced in generating synthetic audio content.

2.4 Speech

Speech Recognition
Speech recognition is the ability of Al systems to identify
spoken words and convert them into text. Speech recognition
has progressed so much that today many computer programs
and texting apps are equipped with dictation devices that can
reliably transcribe speech into writing.
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LSR2: Lip Reading Sentences 2

The Oxford-BBC Lip Reading Sentences 2 (LRS2) dataset,
introduced in 2017, is one of the most comprehensive public
datasets for lipreading in authentic, in-the-wild scenarios
(Figure 2.4.1). The dataset consists of audio-visual clips from
a variety of talk shows and news programs. On automatic
speech recognition (ASR) tasks, systems’ ability to transcribe
speech are evaluated on word error rate (WER), with lower

scores indicating more precise transcription.

Still images from the BBC lip reading sentences 2 dataset

Source: Chung et al., 2024
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This year, the model Whisper-Flamingo set a new standard 1.5 set in 2023 (Figure 2.4.2). However, given the already

on the LRS2 benchmark, achieving a word error rate of 1.3 low WER, significant further improvements appear unlikely,

percent, surpassing the previous state-of-the-art score of suggesting that the benchmark may be nearing saturation.

LRS2: word error rate (WER)

Source: Papers With Code, 2025 | Chart: 2025 Al Index report
8%
7%
6%

5%

4%

Word error rate (WER)

3%

2%

1.30%
1%

0%

2018 2019 2020 2021 2022 2023 2024

Figure 2.4.2

O Table of Contents 9 Chapter 2 Preview




| I Artificial Intelligence
HI Index Report 2025

Chapter 2: Technical Performance
2.5 Coding

Coding involves the generation of

instructions that computers can follow

to perform tasks. Recently, LLMs have

become proficient coders, serving as

valuable assistants to computer scientists. C d M

There is also increasing evidence that 2-5 O Ing
many coders find Al coding assistants

highly useful. As highlighted in last year’s

Al Index, LLMs have become increasingly HumanEval
proficient coders, to the extent that many HumanEval, a benchmark introduced by OpenAl researchers in 2021, evaluates the
foundational coding benchmarks, such coding abilities of Al systems through 164 challenging, handwritten programming

as HumanEval, are slowly becoming

saturated. In response, researchers have
shifted their focus toward testing LLMs Sonnet (HPT), which achieved a score of 100% (Figure 2.5.2).

problems (Figure 2.5.1). The current leader in HumanEval performance is Claude 3.5

on more complex coding challenges.

Sample HumanEval problem
Source: Chen et al., 2023

Figure 2.5.1
HumanEval: Pass@1
Source: Papers With Code, 2025 | Chart: 2025 Al Index report
100% 100%
80%
60%
®
@
©
a
40%
20%
0%
2021 2022 2023 2024
Figure 2.5.2
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SWE-bench

In October 2023, researchers from Princeton and the University A sample model input from SWE-bench

of Chicago introduced SWE-bench, a dataset comprising Source: Jimenez et al., 2023

2,294 software engineering problems sourced from real
GitHub issues and popular Python repositories (Figure 2.5.3).
SWE-bench presents a tougher test for Al coding proficiency,
demanding that systems coordinate changes across multiple
functions, interact with various execution environments,
and perform complex reasoning. SWE-bench features a Lite
subset that is curated to make evaluation more accessible and
a Verified subset that is filtered by a human annotator. The
charts below report on the Verified score.

SWE-bench highlights the rapid improvement of LLMs on

tasks that were once considered extremely demanding. At

the end of 2023, the best performing model on SWE-bench

achieved a score of just 4.4%. By early 2025, the top model,

OpenAl’s 03 model, is reported to have successfully solved

71.7% of the problems on the Verified benchmark set (Figure

2.5.4). This significant performance increase suggests that Figure 2.5.3
Al researchers may soon need to develop more challenging

coding benchmarks to effectively test LLMs.

SWE-bench: percent solved
Source: SWE-bench Leaderboard, 2025; OpenAl, 2024 | Chart: 2025 Al Index report
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BigCodeBench

One limitation of existing coding benchmarks is that many
are restricted to short, self-contained algorithmic tasks or
standalone function calls. However, solving complex and
practical tasks often requires the ability to invoke diverse
functions, such as tools for data analysis or web development.
Effective coding also requires the ability to follow coding
instructions expressed in language, a task not tested by many
current coding benchmarks.

To address the limitations of existing coding benchmarks,
an international team in 2024 released BigCodeBench, a
comprehensive, diverse, and challenging benchmark for

Programming tasks in BigCodeBench
Source: Zhuo et al., 2024

BigCodeBench on the hard set: Pass@1 (average)

Source: Hugging Face, 2025 | Chart: 2025 Al Index report
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[Az

coding evaluation (Figure 2.5.5). BigCodeBench requires
LLMs to invoke multiple function calls across 139 libraries
and seven domains, encompassing 1,140 fine-grained tasks.
Current Al systems struggle on BigCodeBench. For example,
on both the “complete” (code completion based on structured
docstrings) and “instruct” (code completion based on
natural-language instructions) tasks on the hard subset of the
benchmark, the current best model, OpenAl’s o1, achieves
an average score of just 35.5 (Figure 2.5.6). Models perform
slightly better on the full set of the benchmark (Figure 2.5.7).
BigCodeBench highlights the gap that persists for Al systems
to achieve human-level coding proficiency.

Figure 2.5.5

igCodeBench on the full set: Pass@1 (average)

Source: Hugging Face, 2025 | Chart: 2025 Al Index report
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Chatbot Arena: Coding

The Chatbot Arena LLM leaderboard now features a coding
filter, offering valuable insights into how coders and the
broader community perceive the coding capabilities of
different models. This public feedback adds a new dimension

to evaluating model performance. Currently, the top-rated
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LLM for coding is Gemini-Exp-1206, with an arena score of
1,369, closely followed by OpenAl’s latest o1 model at 1,361.
Among Chinese models, DeepSeek-V3 leads with a score
of 1,317, trailing the highest-ranking model by 3.8% (Figure
2.5.8).

LMSYS Chatbot Arena for LLMs: Elo rating (coding)

Source: LMSYS, 2025 | Chart: 2025 Al Index report
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2.6 Mathematics

Mathematical problem-solving benchmarks evaluate Al
systems’ ability to reason mathematically. Al models can be
tested with a range of math problems, from grade-school
level to competition-standard mathematics.

2.6 Mathematics

GSMS8K

GSMB8K, introduced by OpenAl in 2021, is a dataset
containing approximately 8,000 diverse grade-school
math word problems that challenges Al models
to generate multistep solutions using arithmetic
operations (Figure 2.6.1). Alongside MMLU, GSM8K
has become a widely used benchmark for evaluating
advanced LLMs. However, recent concerns have
emerged regarding potential contamination and
saturation of the benchmark.

The top-performing model on GSMS8K is a variant of
Claude Sonnet 3.5, which was optimized using the
HPT prompting strategy and achieved a 97.72% score
(Figure 2.6.2). This marks a significant improvement

GSMB8K: accuracy

Source: Papers With Code, 2024 | Chart: 2025 Al Index report

100%

| I Artificial Intelligence
HI Index Report 2025

Sample problems from GSM8K

Source: Cobbe et al., 2023

Figure 2.6.1

over the previous high of 91.00% in 2023. However, in 2024, several
models from Mistral, Meta, and Qwen scored around 96%, indicating
that the GSM8K benchmark may be approaching saturation.

97.72%

80%
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MATH

MATH is a dataset of 12,500 challenging, competition-
level mathematics problems introduced by UC Berkeley
and University of Chicago researchers in 2021 (Figure
2.6.3). Al systems struggled on MATH when it was first
released, managing to solve only 6.9% of the problems.
Performance has significantly improved. In January
2025, OpenAl’s 03-mini (high) model was released
and achieved the best performance on the MATH
dataset, solving 97.9% of the problems (Figure 2.6.4). As
highlighted in last year’s Al Index, MATH was one of the
few datasets where Al systems had not yet outperformed
the human baseline. This fact no longer remains true.
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Sample problem from MATH dataset

Source: Hendrycks et al., 2023

Figure 2.6.3
MATH word problem-solving: accuracy
Source: Papers With Code, 2024; OpenAl, 2025 | Chart: 2025 Al Index report
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Chatbot Arena: Math

The Chatbot Arena includes a math filter, allowing the public
to rank models based on their performance in generating
math-related answers. The Math Arena evaluates over 181
models and has collected more than 340,000 public votes.

LMSYS Chatbot Arena for LLMs: Elo rating (Math)

Source: LMSYS, 2025 | Chart: 2025 Al Index report
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Unlike the general and coding arenas, where Gemini-based
models lead, the top-ranked model in the Math Arena is
OpenAl’s o1 variant, released in December 2024 (Figure
2.6.5).

FrontierMath

Members of the math community have highlighted limitations
in the current suite of math benchmarks, calling for the
development of new benchmarks to evaluate increasingly
advanced Al systems. One significant challenge is saturation:
Al systems are approaching near-perfect performance
on benchmarks like GSM8K and MATH, which primarily
assess high school and college-level mathematics. To push
the boundaries further, researchers have voiced a need for
benchmarks that test truly advanced mathematics, including
problems in number theory, real analysis, algebraic geometry,

and category theory.

FrontierMath is a new benchmark introduced by Epoch Al
that features hundreds of original, exceptionally challenging

O Table of Contents
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Figure 2.6.5

These vetted by
expert mathematicians, often require hours, days, or even

mathematical problems. problems,
collaborative research efforts to solve. Figure 2.6.6 illustrates
sample problems included on the benchmark. Epoch Al
evaluated six leading LLMs on the FrontierMath benchmark:
ol-preview, ol-mini, GPT-40, Claude 3.5 Sonnet, Grok 2
Beta, and Gemini 1.5 Pro 002. At the time the benchmark
was released, the best-performing model, Gemini 1.5 Pro,
managed to solve just 2.0% of the problems—a significantly
lower success rate than it achieved on other math benchmarks
(Figure 2.6.7). However, OpenAl’s 03 model is reported
to have scored 25.2% on the benchmark. The creators of

FrontierMath hope the benchmark will remain a rigorous
challenge for cutting-edge Al systems for years to come.
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2.6 Mathematics

Sample problems from FrontierMath
Source: Glazer et al., 2024

Figure 2.6.6
FrontierMath: percent solved
Source: Glazer et al., 2024; OpenAl, 2025 | Chart: 2025 Al Index report
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Highlight:
Learning and Theorem Proving

DeepMind employed its systems, AlphaProof and
AlphaGeometry 2, to solve four out of six problems in
the 2024 International Mathematical Olympiad (IMO),
achieving a performance level equivalent to that of a silver
medalist. AlphaGeometry solved 25 out of 30 Olympiad
geometry problems in the benchmarking set, surpassing
the average score of an IMO silver medalist, who typically
solves 22.9 (Figure 2.6.8). The IMO, established in 1959,
is the world’s oldest and most prestigious competition for

young mathematicians.

AlphaProofis areinforcement learning system derived from
AlphaZero, which was previously applied to chess, shogi,
and Go. It trains itself to solve problems by generating
hypotheses that are then verified using the Lean interactive
proof system. A fine-tuned Gemini model is utilized to
translate natural language problem statements into formal
representations, building a comprehensive training library.
In this year’s competition, AlphaProof successfully solved
two algebra problems and one number theory problem,
but failed to solve two combinatorics problems.

AlphaGeometry 2 is a neuro-symbolic hybrid system
featuring a language model based on Gemini and trained
on extensive synthetic data. Prior to 2024, AlphaGeometry
could solve 83% of historical IMO geometry problems.
During the 2024 competition, it solved the sole geometry
problem in just 24 seconds. For the 2024 test, competition
problems were manually translated into Lean’s formal
representation.

It remains unknown how AlphaProof and AlphaGeometry
would perform on traditional theorem-proving benchmarks
such as TPTP, which has been used since 1997 to assess
the performance of automatic theorem-proving (ATP)
systems, particularly those applied to software verification.
The Al Index reported on the state of ATP in its 2021 report.

9 Chapter 2 Preview

Number of solved geometry problems in IMO-AG-30

Source: Trinh et al., 2024 | Chart: 2025 Al Index report
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A 2024 update of that report, based on the latest version of
TPTP containing over 25,000 problems, indicates that fully
automatic systems can now solve 89% of the problems in
TPTP v.9.0.0.

Ideally, TPTP systems could be tested on IMO problems,
and AlphaProof and AlphaGeometry on TPTP problems—
some of which have never been solved by humans, let
alone by ATP systems. Unfortunately, neither of these tests
has been conducted. The primary reason is that the logics
supported by the different systems differ significantly, and
translators between them do not yet exist. Additionally,
while substantial, the TPTP library is not large enough to
serve as a training set for AlphaProof without generating a
considerable number of synthetic examples.



https://www.nature.com/articles/d41586-025-00406-7
https://www.nature.com/articles/d41586-025-00406-7
http://science.sciencemag.org/content/362/6419/1140
https://www.tptp.org/
https://link.springer.com/chapter/10.1007/978-3-031-63498-7_4
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Reasoning in Al involves the ability of Al systems to draw logically
valid conclusions from different forms of information. Al systems are
increasingly being tested in diverse reasoning contexts, including
visual (reasoning about images), moral (understanding moral
dilemmas), and social reasoning (navigating social situations).

Source: Yue et al., 2023

2.7 Reasoning

General Reasoning

General reasoning pertains to Al
systems being able to reason across
broad, rather than specific, domains.
As part of a general reasoning
challenge, for example, an Al system
might be asked to reason across
multiple subjects rather than perform

one narrow task (e.g., playing chess).

MMMU: A Massive Multi-discipline Multimodal
Understanding and Reasoning Benchmark for
Expert AGI

In recent years, the reasoning abilities of Al systems have
advanced so much that older benchmarks like SQUAD (for
textual reasoning) and VQA (for visual reasoning) have become
saturated, indicating a need for more challenging reasoning tests.

Responding to this, researchers from the United States and
Canada recently developed MMMU, the massive multi-
discipline multimodal understanding and reasoning benchmark
for expert AGI (artificial general intelligence). MMMU comprises
about 11,500 college-level questions from six core disciplines: art
and design, business, science, health and medicine, humanities
and social science, and technology and engineering (Figure 2.7.1).
The question formats include charts, maps, tables, chemical
structures, and more. MMMU is among the most demanding
tests of perception, knowledge, and reasoning in Al to date. As
of January 2025, the highest-performing model is OpenAl’s o1,
achieving a score of 78.2%—a significant improvement from the
state-of-the-art score of 59.4% reported in last year’s Al Index
(Figure 2.7.2). While this top score remains below the medium
and high human expert baselines, as with other benchmarks
covered in the Index, Al systems are rapidly closing the gap.
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Sample MMMU questions

Figure 2.71
MMMU on validation set: overall accuracy
Source: MMMU Leaderboard, 2024 | Chart: 2025 Al Index report
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GPQA: A Graduate-Level Google-Proof Q&A Benchmark

In 2023, researchers from NYU, Anthropic, and Meta
introduced the GPQA benchmark to test general,
multisubject Al reasoning. This dataset consists of 448
difficult multiple-choice questions that cannot be easily
answered by web search. The questions were crafted
by subject-matter experts in various fields like biology,
physics, and chemistry (Figure 2.7.3). On the diamond set—
the most challenging subset of the dataset and the one
most frequently tested by Al developers—human experts
achieved an accuracy rate of 81.3%.

Sample chemistry question from GPQA

Source: Rein et al., 2023

GPQA on the diamond set: accuracy
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Last year’s Al Index reported that the best-performing Al
model, GPT-4, achieved only 38.8% on the diamond test set.
In just a year, top Al systems have made significant strides,
with OpenAl’'s 03 model, launched in December 2024,
posting a state-of-the-art score of 87.7%, a 48.9 percentage
point improvement from the state-of-the-art score in 2023
(Figure 2.7.4). In fact, 03’s score was the first to exceed
the baseline set by expert human validators. Al systems
are rapidly advancing on challenging new benchmarks like
MMMU and GPQA, which were recently introduced to push
the limits of Al capabilities.

Figure 2.7.3

0% Figure 2.7.4
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ARC-AGI
As Al systems continue to advance, claims about the imminent

arrival of artificial general intelligence (AGI) have become
more frequent. There is no universally accepted definition
of AGI. Some computer scientists define it as Al systems
that match or surpass human cognitive abilities across a
broad range of tasks. Others emphasize that the definition

should encompass the capacity for general learning and skill
acquisition, describing AGl as a system “capable of efficiently
acquiring new skills and solving novel problems for which it
was neither designed nor trained.”

ARC-AGI is a benchmark introduced in 2019 by Francgois
Chollet, the creator of Keras, a popular open-source deep

Sample ARC-AGI task

Source: Chollet et al., 2025

O Table of Contents

9 Chapter 2 Preview

| I Artificial Intelligence
HI Index Report 2025

learning library. ARC-AGI tests the ability of systems to
generalize beyond prior training. More specifically, the
ARC-AGI benchmark presents Al systems with a set of
independent tasks. Each task includes demonstration or input
pairs followed by one or more test or output scenarios (Figure
2.7.5). This benchmark emphasizes generalized learning
ability: It is impossible for systems to prepare in advance,
as each task introduces a unique logic. The tasks require no
specialized world knowledge or language skills but instead
draw on assumed prior knowledge, such as the concept
of objects, basic topology, and elementary arithmetic—
concepts typically mastered by children at an early age.

Figure 2.7.5



https://arxiv.org/pdf/2412.04604
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ARC-AGI has proven to be an exceptionally challenging
benchmark. When it was first run in 2020, the top-performing
system achieved a score of only 20% (Figure 2.7.6). Four years
later, this score had risen to just 33%. However, this year has
seen substantial progress, with OpenAl’s 03 model achieving
a score of 75.7%. In settings where 03 was allocated a high-
compute budget exceeding the benchmark’s $10,000 limit, it
achieved a score of 87.5%.
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Researchers attribute the overall slow progress in previous
years to an overemphasis on scaling Al models—making
them larger and feeding them increasing amounts of training
data. While this approach improved task-specific skills,
it did little to enhance the ability of Al systems to tackle
problems without prior exposure or training data. This
year’s improvements suggest a shift in focus toward more
meaningful advancements in generalization and search

capabilities.
ARC-AGI-1 on private evaluation set: high score
Source: Chollet et al., 2025; OpenAl, 2025 | Chart: 2025 Al Index report
75.70%
2019 2020 2021 2022 2023 2024
Figure 2.7.6
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Humanity’s Last Exam

As highlighted in both this and last year’s Al Index,
many popular Al benchmarks, such as MMLU, GSM8K,
and HumanEval, have reached saturation. In response,
researchers have developed more challenging benchmarks
to better assess Al capabilities. Recently, members of the
team behind MMLU introduced Humanity’s Last Exam
(HLE), a new benchmark comprising 2,700 highly challenging

Same questions on HLE
Source: Phan et al., 2025
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questions across dozens of subject areas (Figure 2.7.7). The
dataset features multimodal questions, contributed by
subject matter experts, including leading professors and
graduate-level reviewers, that resist simple internet lookups
or database retrieval. Additionally, each question was tested
against state-of-the-art LLMs before inclusion; if an existing
model could answer it, the question was rejected.

Figure 2.7.7



https://arxiv.org/pdf/2501.14249
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Initial testing indicates that HLE is highly challenging for the benchmark are closely monitoring how quickly LLMs
current Al systems. Even top models, such as OpenAl’s improve, and they speculate that performance could exceed
o1, score just 8.8% (Figure 2.7.8). The researchers behind 50% by the end of 2025.

Humanity’s Last Exam (HLE): accuracy
Source: Phan et al., 2025 | Chart: 2025 Al Index report
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Planning

Planning is an intelligent task that involves reasoning
about actions that alter the world. It requires considering
hypothetical future states, including potential external
actions and other transformative events.

PlanBench
Claims have been made that LLMs can solve planning

problems. A group from Arizona State University has
proposed PlanBench, a benchmark suite containing problems
used in the automated planning community, especially those
used in the International Planning Competition. PlanBench is
designed to test LLMs on planning tasks. The benchmark tests
models on 600 problems in which a hand tries to construct
stacks of blocks when it is only allowed to move one block
at a time to a table or to the top of a clear block. After the
benchmark was released in 2022, researchers demonstrated
that models like GPT-4 and GPT-3.5 still struggled with
planning tasks.

PlanBench: instances correct
Source: Valmeekam et al., 2024 | Chart: 2025 Al Index report
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The release of OpenAl’s 01 was met with enthusiasm from the
Al research community, as it was designed to actively reason
rather than function purely as an autoregressive LLM. When
tested on the PlanBench benchmark, o1 showed significant

improvements, though it still struggles with reliable and
consistent planning. In the Blocksworld zero-shot evaluation
(one specific planning evaluation domain), o1achieved a score
of 97.8%—far surpassing the next best LLM, Llama 3.1 405B
(62.6%), and dramatically outperforming GPT-40 (35.5%)
(Figure 2.7.9). In the more challenging Mystery Blocksworld
domain, where some answers are syntactically obfuscated,
o1 scored 52.8% zero-shot, compared to just 0.8% for Llama
3.1405B. GPT-4, by contrast, scored 0%.

Planning is a combinatorial problem, and solving problems
with long solutions is expected to take more than linear time.
Not surprisingly, when tested on instances that require at
least 20 steps, o1 manages to solve just 23.6%.

97.80%

23.80%

Gemini 1.5 Pro ol-preview

Figure 2.7.9
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Al agents, autonomous or
semiautonomous systems designed to
operate within specific environments
to accomplish goals, represent
an exciting frontier in Al research.
These agents have a diverse range of
potential applications, from assisting
in academic research and scheduling
meetings to facilitating
shopping and vacation booking. As
suggested by many recent corporate
releases, agentic Al has become a
topic of increasing interest in the
technical world of Al.

| I Artificial Intelligence
HI Index Report 2025

2.8 Al Agents

For decades, the topic of Al agents has been widely discussed in the Al community,
online yet few benchmarks have achieved widespread adoption, including those featured
in last year’s Index, such as AgentBench and MLAgentBench. This is partly due to
the inherent complexity of benchmarking agentic tasks, which are typically more
diverse, dynamic, and variable than tasks like image classification or answering
language questions. As Al continues to evolve, it will become important to develop

effective methods to evaluate Al agents.

VisualAgentBench

VisualAgentBench (VAB), launched in 2024, represents a
significant step forward in the evaluation of agentic Al. This
benchmark reflects the growing multimodality of Al models
and their increasing proficiency in navigating both virtual and
embodied environments. VAB addresses the need to assess
agent performance in diverse settings that extend beyond
environments reliant solely on linguistic commands. VAB

Tasks on VisualAgentBench
Source: Liu et al., 2024
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tests agents across three broad categories of tasks: embodied
agents (operating in household and gaming environments),
GUI agents (interacting with mobile and web applications),
and visual design agents (such as CSS debugging) (Figure
2.8.1). This comprehensive approach creates a robust
evaluation suite of agents’ capabilities across varied and
dynamic contexts.

Figure 2.8.1



https://arxiv.org/pdf/2408.06327
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VAB presents a significant challenge for Al systems. The top-
performing model, GPT-40, achieves an overall success rate of
just 36.2%, while most proprietary language models average

VisualAgentBench on the test set: success rate
Source: VisualAgentBench Leaderboard, 2025 | Chart: 2025 Al Index report
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RE-Bench

The emergence of increasingly capable agentic
Al systems has fueled predictions that Al might
soon take on the work of computer scientists
or researchers. However, until recently, there
were few benchmarks designed to rigorously
test the R&D capabilities of top-performing Al
systems. In 2024, researchers addressed this
gap with the launch of RE-Bench, a benchmark
featuring seven challenging, open-ended ML
research environments. These tasks, informed
by data from 71 eight-hour attempts by over
60 human experts, include optimizing a kernel,
conducting a scaling law experiment, and fine-
tuning GPT-2 for question answering, among
others (Figure 2.8.3).
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around 20% (Figure 2.8.2). According to the benchmark’s
authors, these results reveal that current Al models are far
from ready for direct deployment in agentic settings.

RE-Bench Process and Flow
Source: Wijk et al., 2024
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Researchers uncovered two key findings when comparing the
performance of humans and frontier Al models. In short time
horizon settings, such as with a two-hour budget, the best Al
systems achieve scores four times higher than human experts
(Figure 2.8.4). However, as the time budget increases, human
performance begins to surpass that of Al. With an eight-hour
budget, human performance slightly exceeds Al, and with a

RE-Bench: average normalized score@k
Source: Wijk et al., 2024 | Chart: 2025 Al Index report
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32-hour budget, humans outperform Al by a factor of two.
The researchers also note that for certain tasks, Al agents
already demonstrate expertise comparable to humans but
can deliver results significantly faster and at a lower cost.
For example, Al agents can write custom Triton kernels more

quickly than any human expert.
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GAIA

GAIA is a benchmark for General Al assistants
introduced by Meta in May 2024. It consists of 466
questions designed to assess Al systems’ ability to
perform a broad range of tasks, including reasoning,
multimodal processing, web browsing, and tool use.
Unlike straightforward, exam-style questions, GAIA
challenges Al models with complex, multistep problems
that may require searching the open web, interpreting
multimodal inputs, and reasoning through intricate
scenarios (Figure 2.8.5). When researchers launched
GAIA, they found that existing LLMs lagged significantly
behind human performance. For instance, GPT-4 with
plugins correctly answered only 15% of the questions,
compared to 92% for human respondents.

As with other recently introduced Al benchmarks,
performance on GAIA has improved rapidly. In 2024, the
top system achieved a score of 65.1%, marking a roughly
30 percentage point increase from the highest score
recorded in 2023 (Figure 2.8.6).
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Sample questions on GAIA

Source: Meta, 2024

Figure 2.8.5
GAIA: average score
Source: GAIA Leaderboard, 2025 | Chart: 2025 Al Index report
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Advancements in Al over the past

decade have paved the way for

exciting new developments in the

field of robotics. Especially with the

rise of foundation models, robots R b M d
are now able to iteratively learn from 2-9 O OtICS a n

their surroundings, adapt flexibly to .
new settings, and make autonomous Autonomous M Otlon
decisions. This section explores key

robotic benchmarks and recent trends,

including the rise of humanoids,

algorithmic advancements  from RObOt'CS
DeepMind, and the emergence
of robotic foundation models. It RLBench

concludes by studying developments

1 aelb-efiing cere One of the most widely adopted benchmarks in the robotics community is RLBench

(Robot Learning Benchmark). Launched in 2019, it features 100 unique tasks of varying
complexity, from simple target reaching to opening an oven and placing a tray inside.”
Researchers typically evaluate new robotic systems on a standardized subset of 18
tasks to gauge performance. Figure 2.9.1 visualizes some of the tasks in RLBench.

Tasks on VisualAgentBench

Source: James et al., 2019

Figure 2.9.1

12 Target reaching in robotics refers to the process by which a robotic system moves its end-effector (such as a robotic arm or gripper) toward a specific goal position or object in space.
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As of January 2025, the top-performing model on this subset
is SAM2Act, a collaboration between researchers at the
University of Washington, Universidad Catoélica San Pablo,
Nvidia, and the Allen Institute for Al. SAM2Act achieved

RLBench: success rate (18 tasks, 100 demo/task)
Source: Papers With Code, 2025 | Chart: 2025 Al Index report
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an 86.8% success rate, marking a 2.8 percentage point
improvement over the previous state-of-the-art in 2024 and
a 66.7 percentage point increase from the leading score in
2021 (Figure 2.9.2).

86.80%

2022 2023
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Highlight:
Humanoid Robotics

2024 was a significant year for robotics, marked by the
growing prevalence of humanoid robots—machines with
humanlike bodies designed to mimic human functions.
For example, Figure Al, a robotics startup dedicated to
developing general-purpose humanoid robots, launched
Figure 02 in 2024, its most advanced model yet. Standing
5 feet 6 inches tall, weighing 154 pounds, and capable of
handling a 44-pound payload, Figure 02 operates for up
to five hours on a single charge. Figure robots are able

Figure robot

making coffee
Source: Figure Al

Figure 2.9.3

Figure robot
assisting in
automotive

assembly
Source: Figure Al

Figure 2.9.4
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to perform complex tasks such as making coffee and
assisting in_automotive assembly by placing sheet metal
into a car fixture (Figure 2.9.3 and Figure 2.9.4). They are
also integrated with OpenAl and can engage in speech-to-
speech reasoning, whereby the robot explains its actions
and responds to queries about its behavior. Figure’s success
follows that of other companies that released humanoid
robots, like Tesla’s Optimus, first launched in 2002 and
redesigned in 2023, and Boston Dynamics’ Atlas humanoid.



https://www.figure.ai/
https://www.youtube.com/watch?v=0SRVJaOg9Co
https://www.youtube.com/watch?v=Q5MKo7Idsok
https://www.youtube.com/watch?v=WlUFoZstcWg
https://www.youtube.com/watch?v=Sq1QZB5baNw&embeds_referring_euri=https%3A%2F%2Fwww.figure.ai%2F&source_ve_path=MjM4NTE
https://www.youtube.com/watch?v=Sq1QZB5baNw&embeds_referring_euri=https%3A%2F%2Fwww.figure.ai%2F&source_ve_path=MjM4NTE
https://www.youtube.com/watch?v=cpraXaw7dyc
https://bostondynamics.com/blog/electric-new-era-for-atlas/
https://www.youtube.com/watch?v=Q5MKo7Idsok
https://www.youtube.com/watch?v=WlUFoZstcWg
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Highlight:
DeepMind’s Developments

In 2023, DeepMind launched two robotic models, AutoRT WorkﬂOW
Source: Google DeepMind, 2024
PaLM-E and RT-2. These models were novel in their use
of transformer-based architectures, typically found in
language modeling, and their training on both manipulation
data and language data. This dual training approach
enabled them to excel at both robotic manipulation and
text generation. In 2024, DeepMind introduced AutoRT,

an Al system that leverages large foundation models to

autonomously generate diverse training data for robots.
It coordinates multiple video-equipped robots, guiding
them through various environments, devising creative
tasks for them to perform, and meticulously documenting
these tasks (Figure 2.9.5). This documentation then serves
as training data for future robotic learning. To date, AutoRT
has generated a dataset of 77,000 robotic trials spanning
6,650 unique tasks. Greater amounts of robotic training
data will be important to improve the training of future
robotic systems.

Conversely, SARA-RT, also from Google DeepMind,

improves the efficiency of transformer-based robotic Figure 2.9.5
models by significantly improving their speed. While

transformers are powerful, they are also computationally  with a technique called “up-training,” which converts the
intensive as they rely on quadratic complexity attention quadratic complexity of standard transformers into a linear
mechanisms. This means that doubling the input size of model. This method drastically reduces computational
data provided to a model can quadruple computational demands while maintaining performance quality. Figure 2.9.6
requirements. This challenge complicates attempts to compares speed tests of Al models enhanced with the SARA
scale robotic models. SARA-RT addresses this challenge  technique against those without. In point cloud processing,

Speed
tests for
SARA vs.
non-SARA
enhanced

models
Source: Google
DeepMind, 2024

Figure 2.9.6
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Highlight:
DeepMind’s Developments (cont’d)

which enables robots to interpret 3D environments, and in
image processing, SARA-based models run significantly faster
while avoiding major increases in run-time at scale.

include ALOHA
(Autonomous Learning of High-level Activities) and
DemosStart. ALOHA Unleashed is a breakthrough in enabling
robots to perform intricate dexterous manipulation tasks,

Other developments from DeepMind

such as tying shoelaces or hanging T-shirts on coat hangers—

ALOHA-trained robot

attempting complex tasks
Source: Google DeepMind, 2024

Figure 2.9.7

ALOHA: success rate

Source: Zhao et al., 2024 | Chart: 2025 Al Index report

tasks that historically have been extremely challenging for
robots. The researchers demonstrated that combining a large
imitation learning dataset with a transformer-based learning
architecture is a highly effective approach for overcoming
these difficulties. The ALOHA approach enabled Google’s
robot to effectively learn a diverse range of tasks, including
hanging a shirt, stacking kitchen items, and tying shoelaces
(Figure 2.9.7). As shown in Figure 2.9.8, ALOHA-trained robots
achieved a high success rate across these tasks.
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DeepMind’s Developments (cont’d)
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Similarly, DemoStart introduces a novel auto-curriculum
reinforcement learning method that enables a robotic arm
to master complex behaviors using only sparse rewards
and a limited number of demonstrations. This breakthrough
highlights the potential for robots to learn efficiently with
minimal data, reducing the need for data-intensive training
and making advanced robotics more accessible and widely

Robots playing amateur-level table tennis
Source: Google DeepMind, 2024
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adopted. DeepMind also introduced a robotic model in
2024 that was capable of reaching amateur human-level
performance in competitive table tennis (Figure 2.9.9).
Given that achieving human-level speed and performance
on real-world tasks is an important benchmark for robotics
research, this achievement is a notable step forward in
robotic ability.

Figure 2.9.9



https://sites.google.com/view/competitive-robot-table-tennis
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Highlight:
Foundation Models for Robotics

In 2024, there was a strong push toward developing
foundational models for robotics—systems capable of
reasoning with language while physically operating in the
real world. Nvidia introduced GROOT (Generalist Robot
00 Technology), a general-purpose foundation model
for humanoid robots designed to understand natural
language and mimic human movements. Alongside
GROOT, Nvidia released data pipelines, simulation
frameworks, and the Thor robotics computer. Figure
2.9.10 illustrates the components of GROOT’s launch. This
robotic development suite is intended to make it easier
for the robotic community to scale and build increasingly
advanced robotics.

GROOT blueprint for synthetic motion generation

Source: Nvidia, 2024
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Nvidia was not alone in this space. Covariant launched
REM-1, a robotic foundation model with language
capabilities and real-world maneuverability. Meanwhile,

LLaRA, developed by researchers at Stony Brook
University and the University of Wisconsin-Madison,
integrates perception, communication, and action into
a monolithic, end-to-end deep learning model. These
new models continue a trend from 2023, which saw the
launch of robotic foundation models like RT-2, PaLM-E,

and Open-X Embodiment.

Figure 2.9.10



https://nvidianews.nvidia.com/news/foundation-model-isaac-robotics-platform
https://nvidianews.nvidia.com/news/foundation-model-isaac-robotics-platform
https://covariant.ai/insights/introducing-rfm-1-giving-robots-human-like-reasoning-capabilities/
https://vimeo.com/921866765?share=copy
https://vimeo.com/921866765?share=copy
https://vimeo.com/921866232?share=copy
https://arxiv.org/abs/2406.20095
https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/
https://palm-e.github.io/
https://robotics-transformer-x.github.io/
https://www.youtube.com/watch?v=waZ08Z3uimk

Chapter 2: Technical Performance
2.9 Robotics and Automous Motion

Self-Driving Cars

Self-driving vehicles have long been a goal for Al researchers
and technologists. However, their widespread adoption has
been slower than anticipated. Despite many predictions
that fully autonomous driving is imminent, widespread use
of self-driving vehicles has yet to become a reality. Still, in
recent years, significant progress has been made. In cities
like San Francisco and Phoenix, fleets of self-driving taxis
are now operating commercially. This section examines
recent advancements in autonomous driving, focusing
on deployment, technological breakthroughs and new
benchmarks, safety performance, and policy challenges.

Deployment

Self-driving cars are increasingly being deployed worldwide.
Cruise, a subsidiary of General Motors, launched its
autonomous vehicles in San Francisco in late 2022 before
having its license suspended in 2023 after a litany of safety
incidents. Waymo, a subsidiary of Alphabet, began deploying
its robotaxis in Phoenix in early 2022 and expanded to San
Francisco in 2024. The company has since emerged as one
of the more successful players in the self-driving industry: As
of January 2025, Waymo operates in four major U.S. cities—
Phoenix, San Francisco, Los Angeles, and Austin (Figure
2.9.11). Data sourced from October 2024 suggests that across
the four cities the company provides 150,000 paid rides per
week, covering over a million miles. Looking ahead, Waymo
plans to test its vehicles in 10 additional cities, including Las
Vegas, San Diego, and Miami. The company chose testing
locations, such as upstate New York and Truckee, California,
that experience snowy weather so it can assess the vehicles
in diverse driving conditions. There has also been notable
progress in self-driving trucks, with companies like Kodiak
completing its first driverless deliveries and Aurora reporting
steady advancements, including over 1 million miles of
autonomous freight hauling on U.S. highways since 2021—
albeit with human safety drivers present. Still, challenges
remain in bringing this technology to market, with Aurora
recently announcing it would delay the commercial launch of
its fleet from the end of 2024 until April 2025.
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Waymo rider-only miles driven without a human
driver
Source: Waymo, 2024 | Table: 2025 Al Index report

Location Rider-only miles through
September 2024

Los Angeles 1.947M
San Francisco 10.209M
Phoenix 20.823M
Austin 124K
Figure 2.9.11

China’s self-driving revolution is also accelerating, led by
companies like Baidu’s Apollo Go, which reported 988,000
rides across Chinain Q32024, reflecting a 20% year-over-year
increase. In October 2024, the company was operating 400
robotaxis and announced plans to expand its fleet to 1,000
by the end of 2025. Pony.Al, another Chinese autonomous
vehicle manufacturer, has pledged to scale its robotaxi fleet
from 200 to at least 1,000 vehicles—with expectations that
the fleet will reach 2,000 to 3,000 by the end of 2026. China
is leading the way in autonomous vehicle testing, with reports
indicating that it is testing more driverless cars than any
other country and currently rolling them out across 16 cities.
Robotaxis in China are notably affordable—even cheaper,
in some cases, than rides provided by human drivers. To
support this growth, China has prioritized establishing
national regulations to govern the deployment of driverless
cars. Beyond the self-driving revolution taking place in the
U.S. and China, European startups like Wayve are beginning
to gain traction in the industry.



https://jalopnik.com/elon-musk-tesla-self-driving-cars-anniversary-autopilot-1850432357
https://www.cnbc.com/2022/06/02/cruise-gets-green-light-for-commercial-robotaxis-in-san-francisco.html
https://www.cnbc.com/2023/10/24/california-dmv-suspends-cruises-self-driving-car-permits.html
https://www.azcentral.com/story/money/business/tech/2022/05/10/waymo-offer-autonomous-vehicle-rides-phoenix/9711015002/
https://waymo.com/blog/2024/06/waymo-one-is-now-open-to-everyone-in-san-francisco
https://support.google.com/waymo/answer/9059119?hl=en
https://www.forbes.com/sites/alanohnsman/2024/10/29/alphabets-waymo-logging-150000-robotaxi-rides-and-1-million-miles-a-week/
https://www.theverge.com/news/600542/waymo-test-cities-las-vegas-san-diego-2025
https://techcrunch.com/2025/01/24/kodiak-has-made-its-first-driverless-truck-deliveries-to-customer-atlas-energy/
https://apnews.com/article/trucks-selfdriving-highways-automation-driver-083409631158f54d806d75309c4764e2
https://techcrunch.com/2024/10/30/aurora-innovation-delays-commercial-autonomous-truck-launch-to-2025/
https://www.theverge.com/2024/11/22/24303299/baidu-apollo-go-rt6-robotaxi-unit-economics-waymo?utm_source=chatgpt.com
https://johnmenadue.com/apollo-gos-robotaxi-service-in-china-a-glimpse-into-future-of-transport/#:~:text=As%20of%20October%2C%20it%20has,over%208%20million%20robotaxi%20rides.
https://www.chinadaily.com.cn/a/202501/16/WS678864cea310f1265a1db2e7.html
https://www.nytimes.com/2024/06/13/business/china-driverless-cars.html
https://www.cnn.com/2024/07/18/cars/china-baidu-apollo-go-robotaxi-anxiety-intl-hnk/index.html
https://www.technologyreview.com/2024/01/24/1086989/china-regulation-robotaxi-autonomous-driving/
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Technical Innovations and New Benchmarks

Over the past year, self-driving technology has advanced
significantly, both in vehicle capabilities and benchmarking
methods. In October 2024, Tesla unveiled the Cybercab, a
two-passenger autonomous vehicle without a steering wheel
or pedals, which is set for production in 2026 at a price of
under $30,000. Tesla also unveiled the Robovan, an electric
autonomous van designed to transport up to 20 passengers.
Meanwhile, Baidu’s Apollo Go launched its latest-generation
robotaxi, the RT6, across multiple cities in China (Figure 2.9.12).
With a price tag of just $30,000 and a battery-swapping system,
the RT6 represents a major step toward making self-driving
technology more cost-effective and scalable. As costs continue
to decline, the adoption of autonomous vehicles is expected to
accelerate. Notable business partnerships have also advanced
self-driving technology, including Uber’s collaboration with
WeRide—the world’s first publicly listed robotaxi company—
to develop an autonomous ride-sharing platform in Abu Dhabi.

In 2024, several new benchmarks were introduced to evaluate
self-driving capabilities. One notable example is nuPlan,
developed by Motional. It is a large-scale, autonomous driving
dataset designed to test machine-learning-based motion
planners. The benchmark includes 1,282 hours of diverse
driving scenarios from multiple cities, along with a simulation
and evaluation framework that enables planners’ actions to
be tested in closed-loop settings. Another recent benchmark
is OpenAD, the first real-world, open-world autonomous
driving benchmark for 3D object detection. OpenAD focuses
on domain generalization—the ability of autonomous driving
systems to adapt across diverse sensor configurations—and
open-vocabulary recognition, which allows systems to identify
previously unseen semantic categories.

An overview of Bench2Drive
Source: Jia et al., 2024

Figure 2.9.13
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Baidu’s RT-6

Source: Verge, 2024

Figure 2.9.12

Most existing benchmarks for end-to-end autonomous
driving rely on open-loop evaluation, which can be
restrictive. Open-loop settings fail to test how autonomous
agents react to real-world conditions and often lead to
models that memorize driving patterns rather than learning
to drive authentically. While closed-loop benchmarks like
TownO5Long and Longest6 exist, they primarily assess basic
driving skills rather than performance in complex, interactive
scenarios. Bench2Drive is another new benchmark that
improves on these limitations by providing a comprehensive,
realistic, closed-loop testing simulation environment for end-
to-end autonomous vehicles (Figure 2.9.13). It includes a
training set with over 2 million fully annotated frames sourced
from more than 10,000 clips, as well as an evaluation suite
with 220 short routes designed to test autonomous driving
capabilities in diverse conditions. Figure 2.9.14 displays
the driving scores of various autonomous driving methods
evaluated on the Bench2Drive benchmark.®

13 This metric accounts for both route completion and infractions, averaging route completion percentages while applying penalties based on infraction severity. For more detail on the

driving score methodology, see Section 3 of the Bench2Drive paper.
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https://www.lemonde.fr/en/economy/article/2024/10/19/tesla-s-new-horizon-the-robotaxi_6729822_19.html?utm_source=chatgpt.com
https://www.theverge.com/2024/10/10/24267158/tesla-van-robotaxi-autonomous-price-release-date
https://www.theverge.com/2024/11/22/24303299/baidu-apollo-go-rt6-robotaxi-unit-economics-waymo?utm_source=chatgpt.com
https://investor.uber.com/news-events/news/press-release-details/2024/Uber-and-WeRide-Launch-Autonomous-Mobility-Service-in-Abu-Dhabi/default.aspx
https://arxiv.org/pdf/2403.04133
https://arxiv.org/pdf/2411.17761
https://arxiv.org/pdf/2406.03877
https://arxiv.org/pdf/2406.03877
https://www.theverge.com/2024/11/22/24303299/baidu-apollo-go-rt6-robotaxi-unit-economics-waymo?utm_source=chatgpt.com
https://arxiv.org/pdf/2406.03877

Chapter 2: Technical Performance
2.9 Robotics and Automous Motion

Bench2Drive: driving score
Source: Jia et al., 2024 | Chart: 2025 Al Index report
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Figure 2.9.14
Safety Standards

Emerging research suggests that self-driving cars may be
safer than human-driven vehicles. Figure 2.9.15 compares
the number of reported incidents per million miles driven by
Waymo vehicles to the estimated rates if humans had driven
the same distance. The data shows that Waymo vehicles
had significantly fewer incidents, including 1.42 fewer airbag
deployments, 3.16 fewer crashes with reported injuries, and

9 Chapter 2 Preview
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3.65 fewer police-reported crashes per million miles (Figure
2.9.15). Figure 2.9.16 highlights the differences in incident
rates across various crash locations, revealing that across all
locations with available data, Waymo vehicles consistently
recorded lower rates of airbag deployments, injury-reported

crashes, and police-reported incidents.
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Waymo driver vs. human benchmarks in Phoenix and San Francisco
Source: Waymo, 2024 | Chart: 2025 Al Index report

6

Incidents per million miles
w

2
1
0.32
o I
Human benchmark Waymo Human benchmark Waymo Human benchmark Waymo
Airbag deployment Any-injury-reported Police-reported
Figure 2.9.15"
Waymo driver percent difference to human benchmark in Phoenix and San Francisco
Source: Waymo, 2024 | Chart: 2025 Al Index report
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Figure 2.9.16

14 Waymo’s safety data is continuously updated in real time, so the totals reported in this section may not fully align with those currently displayed on their website.
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Waymo, in collaboration with Swiss Re, one of the world’s
leading reinsurers, also conducted a study analyzing liability
claims related to collisions over several million miles driven by
its fully autonomous vehicles. The study compared Waymo’s
liability claims to human-driver baselines derived from Swiss
Re’s extensive dataset, which includes over 500,000 claims
and 200 billion miles of driving data. The results showed that
Waymo vehicles had an 88% reduction in property damage
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claims and a 92% reduction in bodily injury claims (Figure
2.9.17). In real terms, across 25.3 million miles driven, Waymo
vehicles were involved in just nine property damage claims and
two bodily injury claims, whereas human drivers over the same
distance would be expected to incur 78 property damage
claims and 26 bodily injury claims. The Waymo drivers were
also significantly safer than latest-generation human-driven
vehicles that are equipped with added safety features.

Comparison of liability insurance claims by type: Waymo driver vs. human-driven vehicles

Source: Di Lillo et al., 2024 | Chart: 2025 Al Index report
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Swiss Re overall Latest-generation Waymo
driving population HDVs
Bodily injury
Figure 2.9.17
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CHAPTER 3:
Responsible Al

Overview

Artificial intelligence is now deeply integrated into nearly every aspect of our lives. It
is reshaping sectors like education, finance, and healthcare, where algorithm-driven
insights guide critical decisions. While this shift offers significant benefits, it also brings
with it notable risks. The past year has seen a continued concentration of effort on the
responsible development and deployment of Al systems.

This chapter examines trends in responsible Al (RAI) across several dimensions. It
begins by establishing key RAI definitions before assessing broadly relevant issues
such as Al incidents, standardization challenges in LLM responsibility, and benchmarks
for model factuality and truthfulness. Next, it explores RAI trends within key societal
sectors—industry, academia, and policymaking—and analyzes specific subtopics,
including privacy and data governance, fairness, transparency and explainability,
and security and safety, using benchmarks that illuminate model performance and
highlights of notable research. The chapter concludes with a study of two special RAI
topics: agentic Al and election misinformation.
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Chapter Highlights

1. Evaluating Al systems with responsible Al criteria is still uncommon, but new benchmarks are beginning
to emerge. Last year’s Al Index highlighted the lack of standardized RAI benchmarks for LLMs. While this issue persists, new
benchmarks such as HELM Safety and AIR-Bench help to fill this gap.

2. The number of Al incident reports continues to increase. According to the Al Incidents Database, the number of
reported Al-related incidents rose to 233 in 2024—a record high and a 56.4% increase over 2023.

3. Organizations acknowledge RAI risks, but mitigation efforts lag. A McKinsey survey on organizations’ RAI
engagement shows that while many identify key RAI risks, not all are taking active steps to address them. Risks including
inaccuracy, regulatory compliance, and cybersecurity were top of mind for leaders with only 64%, 63%, and 60% of respondents,
respectively, citing them as concerns.

4. Across the globe, policymakers demonstrate a significant interest in RAI. In 2024, global cooperation on Al
governance intensified, with a focus on articulating agreed-upon principles for responsible Al. Several major organizations—
including the OECD, European Union, United Nations, and African Union—published frameworks to articulate key RAI concerns
such as transparency and explainability, and trustworthiness.

5. The data commons is rapidly shrinking. Al models rely on massive amounts of publicly available web data for training.
A recent study found that data use restrictions increased significantly from 2023 to 2024, as many websites implemented new
protocols to curb data scraping for Al training. In actively maintained domains in the C4 common crawl dataset, the proportion
of restricted tokens jumped from 5-7% to 20-33%. This decline has consequences for data diversity, model alignment, and
scalability, and may also lead to new approaches to learning with data constraints.

6. Foundation model research transparency improves, yet more work remains. The updated Foundation
Model Transparency Index—a project tracking transparency in the foundation model ecosystem—revealed that the average
transparency score among major model developers increased from 37% in October 2023 to 58% in May 2024. While these gains
are promising, there is still considerable room for improvement.
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Chapter Highlights (cont’d)

7. Better benchmarks for factuality and truthfulness. Earlier benchmarks like HaluEval and TruthfulQA, aimed at
evaluating the factuality and truthfulness of Al models, have failed to gain widespread adoption within the Al community. In
response, newer and more comprehensive evaluations have emerged, such as the updated Hughes Hallucination Evaluation
Model leaderboard, FACTS, and SimpleQA.

8. Al-related election misinformation spread globally, but its impact remains unclear. In 2024, numerous
examples of Al-related election misinformation emerged in more than a dozen countries and across over 10 social media
platforms, including during the U.S. presidential election. However, questions remain about measurable impacts of this problem,
with many expecting misinformation campaigns to have affected elections more profoundly than they did.

9. LLMs trained to be explicitly unbiased continue to demonstrate implicit bias. Many advanced LLMs—
including GPT-4 and Claude 3 Sonnet—were designed with measures to curb explicit biases, but they continue to exhibit
implicit ones. The models disproportionately associate negative terms with Black individuals, more often associate women with
humanities instead of STEM fields, and favor men for leadership roles, reinforcing racial and gender biases in decision making.
Although bias metrics have improved on standard benchmarks, Al model bias remains a pervasive issue.

10. RAI gains attention from academic researchers. The number of RAI papers accepted at leading Al conferences
increased by 28.8%, from 992 in 2023 to 1,278 in 2024, continuing a steady annual rise since 2019. This upward trend highlights
the growing importance of RAI within the Al research community.
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Chapter 3: Responsible Al
3.1 Background

3.1 Background

Definitions

In this chapter, the Al Index explores four key dimensions of
responsible Al: privacy and data governance, transparency
and explainability, security and safety, and fairness. Other
dimensions of responsible Al, such as sustainability and
reliability, are discussed elsewhere in the report. Figure
311 offers definitions for the responsible Al dimensions
addressed in this chapter, along with an illustrative example
of how these dimensions might be practically relevant. The
“example” column examines a hypothetical platform that
employs Al to analyze medical patient data for personalized
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treatment recommendations, and demonstrates how issues
like privacy, transparency, etc., could be relevant. Although
Figure 3.1.1 breaks down various dimensions of responsible
Al into specific categories to improve definitional clarity, this
chapter organizes these dimensions into the following broader
categories: privacy and data governance, transparency and
explainability, security and safety, and fairness. Since these
topics are often interrelated, the Al Index adopted this
structured approach to organization.

Responsible Al dimensions, definitions, and examples
Source: Al Index, 2025 | Table: 2025 Al Index report

Privacy

An individual’s right to confidentiality, anonymity, and
security protections of their personal data, including the
right to consent and be informed about data usage,
coupled with an organization’s responsibility to safeguard
these rights when handling personal data.

Patient data is handled with strict confidentiality, ensuring
anonymity and protection. Patients consent to whether
their data can be used to train a tumor detection system.

Data governance

Establishment of policies, procedures, and standards to
ensure the quality, access, and licensing of data, which is
crucial for broader reuse and improved accuracy of
models.

Policies and procedures are in place to maintain data
quality and permissions for reuse of a public health dataset.
There are clear data quality pipelines and specification of
use licenses.

Fairness and bias

Creating algorithms that avoid bias or discrimination, and
considering the diverse needs and circumstances of all
stakeholders, thereby aligning with broader societal
standards of equity.

A medical Al platform designed to avoid bias in treatment
recommendations, ensuring that patients from all
demographics receive equitable care.

behind the outputs of an Al system in ways that are
understandable to its users and stakeholders.

Transparency Open sharing of how Al systems work, including data The development choices, including data sources and
sources and algorithmic decisions, as well as how Al algorithmic design decisions are openly shared. How the
systems are deployed, monitored, and managed, covering system is deployed and monitored is clear to health care
both the creation and operational phases. providers and regulatory bodies.

Explainability The capacity to comprehend and articulate the rationale The Al platform can articulate the rationale behind its

treatment recommendations, making these insights
understandable to doctors and patients to increase trust in
the Al system.

Security and safety

The integrity of Al systems against threats, minimizing
harm from misuse, and addressing inherent safety risks like
reliability concerns as well as the monitoring and
management of safety-critical Al systems.

Measures are implemented to protect against cyber threats
and to ensure the system’s reliability, minimizing risks from
misuse and safeguarding patient health and data.
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3.2 Assessing Responsible Al

While the responsible development, deployment, and
governance of Al received increased attention in 2024,
capturing overall trends in this area is still challenging.
This section covers some indicators relevant to
capturing responsible Al at the aggregate level.
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3.2 Assessing Responsible Al

Al Incidents
The Al Incident Database (AlID) tracks instances of ethical

misuse of Al, such as autonomous cars causing pedestrian
fatalities or facial recognition systems leading to wrongful
arrests.

Current incident tracking relies on publicly available media
reports, meaning the actual number of incidents is likely
higher, as many go unreported. In 2024, discussions centered
on refining methods for defining and tracking incidents,
particularly those classified as “serious.” While no consensus

Number of reported Al incidents, 2012-24

Source: Al Incident Database (AlID), 2024 | Chart: 2025 Al Index report
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has been reached on a standard definition, these discussions
highlight the need for more detailed reporting to better
document Al-related risks and their implications.

Al-related incidents sharply increased in 2024, reaching
a record high of 233—a 56.4% increase from 2023 (Figure
3.2.1). This rise likely reflects both the expanding use of Al and
heightened public awareness of its impact. Greater familiarity
with Al may also be driving more frequent reporting of
incidents to relevant databases.
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Figure 3.2.1!

1The number of Al incidents is continually updated over time, including for previous years. Therefore, the totals reported in Figure 3.2.1 might not align with the more recent totals published

on the Al Incident Database.
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3.2 Assessing Responsible Al

Examples
The next section details recent Al incidents to shed light on
the ethical challenges commonly linked with Al.

Misidentifications and the Human Cost of Facial
Recognition Technology (May 25, 2024)

A woman in the U.K. was wrongfully identified as a shoplifter
by the Facewatch system while shopping at a Home

Bargains store. After being publicly accused, searched, and
banned from stores using the technology, she experienced
emotional distress and worried about the long-term impact
on her reputation. Facewatch later acknowledged the error
but did not comment or issue a public apology. The case
reflects broader issues with the increasing adoption of facial
recognition systems by retailers and law enforcement. While
advocates emphasize their potential to reduce crime and
enhance public safety, critics point to privacy violations,
misidentifications, and the potential normalization of mass
surveillance. Despite assurances of accuracy, errors still
occur. These types of incidents also raise questions about how
system errors are acknowledged and victims compensated.

Source: BBC, 2024
Figure 3.2.2
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Growing threat of deepfake intimate images (Jun. 18, 2024)
Elliston Berry, a 15-year-old high school student from Texas,
became the victim of Al-generated harassment when a
male classmate used a clothes-removal app to create fake
nude images of Berry and her friends, distributing them
anonymously through social media. The realistic but falsified
images, made from photos taken from Berry’s private
Instagram account, caused her to experience feelings of fear,
shame, and anxiety, which impacted her social and academic
life. While the perpetrator faced juvenile sanctions and school
discipline, the case exposed gaps in legal and institutional
frameworks for addressing Al-driven harassment. Berry and
her family have since advocated for stronger protections, and
several bills have been introduced in the U.S. Congress to
criminalize the nonconsensual sharing of intimate images—
real or fake—and to impose removal obligations on social
media platforms. Certain countries, including Australia, have
already passed such laws.

Source: Restless Network, 2021
Figure 3.2.3



https://www.bbc.com/news/technology-69055945
https://www.facewatch.co.uk/
https://www.wsj.com/politics/policy/teen-deepfake-ai-nudes-bill-ted-cruz-amy-klobuchar-3106eda0
https://ministers.ag.gov.au/media-centre/new-criminal-laws-combat-sexually-explicit-deepfakes-05-06-2024
https://www.bbc.com/news/technology-69055945
https://restlessnetwork.com/we-need-to-make-non-consensual-deepfake-porn-illegal/

Chapter 3: Responsible Al
3.2 Assessing Responsible Al

Al chatbot exploits deceased individual’s identity (Oct. 7,
2024)

Jennifer Ann Crecente, a high school senior murdered by an
ex-boyfriend in 2006, was brought back into public focus
when her name and image appeared in an Al chatbot on
Character.Al. Discovered by her father, Drew Crecente, via
a Google Alert, the bot—created by an unknown user—
used Jennifer Ann’s yearbook photo and described her as
a “knowledgeable and friendly Al character” Crecente,
an advocate for awareness of teenage dating violence,
expressed outrage and distress at the unauthorized use of
his daughter’s identity, calling the experience retraumatizing.
Despite the chatbot’s removal for violating Character.Al’s
impersonation policies, the incident highlights troubling gaps
in Al platform oversight and the ethical dilemmas surrounding
digital recreations of deceased individuals.

Source: Business Insider, 2024
Figure 3.2.4
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Chatbot blamed for teenage suicide (Oct. 23, 2024)
A lawsuit against Character.Al has raised concerns about

the role of Al chatbots in mental health crises. The case
involves a 14-year-old boy, Sewell Setzer lll, who died by
suicide after prolonged interactions with a chatbot character,
which reportedly provided harmful advice rather than
offering support or critical resources. The lawsuit alleges
that the chatbot, designed to engage users in deep and
personal conversations, lacked proper safeguards to prevent
dangerous interactions and encouraged Sewell to take his
life. Figure 3.2.5 highlights a screenshot of the conversation
between Sewell and “Dany” (the chatbot character), the day
of his suicide. This case speaks to the ethical challenges of
Al-driven companionship and the potential risks of deploying
conversational Al without adequate oversight. While Al
chatbots can offer emotional support, critics warn that
without guardrails, they may inadvertently reinforce harmful
behaviors or fail to intervene when users are in distress.

Source: Business Insider, 2024
Figure 3.2.5
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Limited Adoption of RAI Benchmarks

Last year’s Al Index was among the first publications to
highlight the lack of standard benchmarks for Al safety and
responsibility evaluations. While major model developers
consistently test their flagship models on the same general
capabilities benchmarks—covering math, coding, and
language skills—no such standard exists for safety and
responsible Al assessments. Standardized evaluation
suites are important for enabling direct comparisons
between models. This is especially important for safety and
responsibility features, as businesses and governments are
increasingly deploying Al in real-world applications.

This year’s Al Index confirms that this trend persists. Figure
3.2.6 highlights several general capabilities benchmarks (such
as MMLU, GPQA Diamond, and MATH) used to evaluate
major models released in 2024, while Figure 3.2.7 showcases
prominent safety and responsible Al benchmarks, indicating
whether leading developers tested their models against
them. As with last year, there is clear consensus among
model developers on which general capabilities benchmarks
to use—but none on similar RAl benchmarks.

Reported general capability benchmarks for popular foundation models

Source: Al Index, 2025 | Table: 2025 Al Index report

(oF:1.:1 11113 GPT-4.5 DeepSeek-R1 Claude 3.7 Llama 3.3
benchmark Sonnet
v v v v v v

MMLU, v
MMLU-Pro or
MMMLU
GPQA or v v v v v v v
GPQA-Diamond
MATH-500 v v v v v
AIME 2024 v v v v v
SWE-bench v v v v v
verified
MMMU v v v v v
Figure 3.2.6

Reported safety and responsible Al benchmarks for popular foundation models

Source: Al Index, 2025 | Table: 2025 Al Index report

Responsible Al GPT-4.5 DeepSeek-R1 Claude 3.7
benchmark Sonnet
BBQ v v v

HarmBench

Cybench v
SimpleQA v v

Toxic WildChat v v v
StrongREJECT v v

WMDP benchmark v v

MakeMePay v v

MakeMeSay v v
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This does not mean model developers neglect safety
testing—many conduct evaluations—but much like most
models are kept proprietary, these evaluations are often
internal and not standardized, making assessments and
comparisons of models difficult. External evaluators also
present challenges. For example, third-party evaluators like
Gryphon, Apollo Research, and METR assess only select
models, and their findings cannot be widely validated by the
broader Al community.

Factuality and Truthfulness

Despite significant progress, LLMs still face challenges with
factual inaccuracies and hallucinations, often generating
information that appears credible but is false. Notable real-
world examples include cases where lawyers submitted
court briefs containing citations fabricated by LLM systems.
Monitoring the rate of hallucinations in LLMs is therefore
important. However, some benchmarks highlighted in
previous editions of the Al Index, such as HaluEval and
TruthfulQA, have struggled to gain traction within the
Al community. In 2024, several new benchmarks were

introduced to better evaluate the factuality of these models.

HHEM: hallucination rate

Source: HHEM leaderboard, 2025 | Chart: 2025 Al Index report
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P,

Hughes Hallucination Evaluation Model (HHEM)
Leaderboard
The Hughes
leaderboard,

Model (HHEM)
assesses

Hallucination Evaluation

developed by Vectara, how
frequently LLMs introduce hallucinations when summarizing
documents. In this benchmark, models generate summaries
from documents in the CNN and Daily Mail corpus. These
summaries are then evaluated for hallucination rates. HHEM
stands out as one of the most comprehensive and up-to-date
evaluations of Al systems’ tendency to hallucinate. Recent
models, including Llama 3, Claude 3.5, and Gemini 2.0, have

all been benchmarked on the leaderboard.

Currently, the GLM-4-9b-Chat and Gemini-2.0-Flash-Exp
models are tied for the lowest hallucination rate, each at just
1.3%. The next closest models, o1-mini and GPT-40, follow
closely, with hallucination rates of 1.4% and 1.5%, respectively
(Figure 3.2.8).

3.00%]| 2.90%
2.80%
260% , 50%  2.50%

2.50% . T 240% 2.40%
Q
® 2.00% 1.90%
c 1.80%
& 170%  1.70%
P 1.50%
‘G 1.50% 1.40%
H 1.30% 1.30%
=
I

1.00%

0.50%

ooop! = &9 =9 &S - - - ‘<®- ‘<*c ‘LS - - - s =

9>, g Ny ny '4/
a4, b”e,, S/, Cr, Cr, s, . . &y Up
» %) o, 0, 8, s, &) g K g e, ) Ny,
415, QM/@,] Sry, s°'?/o s°fr/,° '/07 eﬁ’é ’/G . ”G,o, '/G,o '/Qo '/Qp, '/07‘,,7. "2 0., 44{9/,,)
s 2 A 5. & S 0. S Yo Ny S5, 2.
b, 2. 2. ‘93,36 Sy, ©seg iy My, Brsy 96\%
Sy, Mty s gy Por 7 N
//)/- /-(/
(o}
Figure 3.2.8

O Table of Contents

9 Chapter 3 Preview



https://crfm.stanford.edu/2024/11/08/helm-safety.html
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2109.07958
https://huggingface.co/spaces/vectara/leaderboard

| HI Artificial Intelligence
Chapter 3: Responsible Al Index Report 2025

3.2 Assessing Responsible Al

Highlight:

FACTS, SimpleQA, and the Launch of Harder Factuality Benchmarks

The HHEM leaderboard, while useful, Still generations from Stable Video Diffusion
. . Source: Google, 2024
appears to be nearing saturation as model Figure 3.2.9

performance improves. Additionally, its
focus on news articles and summarization
tasks limits its comprehensiveness. As
Al capabilities continue to evolve, there
is a growing need for benchmarks that
assess factuality in more challenging and
diverse contexts.

This year, several new benchmarks
were introduced for evaluating the
factuality and truthfulness of LLMs,
including Google’s FACTS Grounding.

This benchmark assesses how well
FACTS: factuality score

Source: FACTS leaderboard, 2025 | Chart: 2025 Al Index report
factually accurate and detailed enough 100%

LLMs generate responses that are both

to provide satisfactory answers. As 78.80% 79.40% 80.00% 82:90% 83.60%

80% o, 74.20%
part of FACTS, models must craft long- 71.00%
61.70% 62.00%

form responses to user requests based 60%

on a context document (Figure 3.2.9). i a0

These documents cover a wide range of

domains, including finance, technology, 29%

retail, medicine, and law. FACTS is more oqn B BN BN BN BN BN BN B W

Factuality score

.. 2 ‘€ ‘€ Q ) g 8 8 g
complex than HHEM, requiring models g B € S I g 8 8 3
o 5 £ § 3 85 § ¢ oz 4
to perform tasks such as summarization, a ° b S S a8 R
. . © a ) & ) ] :
question-and-answer generation, fact- > 2 2 z = -
© c = = L
o 9 9 43 £ c
finding, and explanation. Responses are & f; §, : £
. M 2 S ]
evaluated by a collection of Al models— 4 " i
> T
Gemini 1.5 Pro, GPT-40, and Claude 3 §
3.5 Sonnet—which assign a factuality Model
Figure 3.2.10

score. Currently, Gemini-2.0-Flash-Exp
holds the highest grounding score at
83.6% (Figure 3.2.10).
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Highlight:
FACTS, SimpleQA, and the Launch of Harder Factuality Benchmarks
(cont’d)

Evaluating the factuality of LLMs is challenging because = Sample questions from SimpleQA

Source: OpenAl, 2024

their long answers often contain multiple factual claims,  ggirez2n

making it difficult to assess the accuracy of each one. To
address this, OpenAl researchers introduced SimpleQA, a
new benchmark for evaluating LLM factuality. SimpleQA
presents models with over 4,000 short fact-seeking
questions that are straightforward, easily gradable, and
relatively challenging. These questions span a diverse
range of topics, including history, science and technology,
art, and geography (Figure 3.2.11).
some, like the Claude-3 family, refrained from responding
SimpleQA presents a significant factuality challenge for  to 75% of the prompts. Among models that attempted to
leading LLMs. The best-performing model, OpenAl’s o1-  respond to questions, o1-preview scored 47.0% of “correct-
preview, successfully answers only 42.7% of the questions given-attempted” prompts, followed by Claude 3.5 Sonnet

(Figure 3.2.12). Researchers also evaluated whethermodels  at 44.5%. As expected, larger models tend to perform better
would attempt to answer certain questions, finding that on this benchmark.

SimpleQA: percent of questions
Source: Wei et al., 2024 | Chart: 2025 Al Index report

| M Correct Not attempted M Correct given attempted

100%

80%

60%

47.00%

44.50%

40% 38.20% 38.00%

Percent of questions

22.90%  23.50%

20%

0%

Claude-3-haiku  Claude-3-sonnet Claude-3-opus Claude-3.5-sonnet GPT-40-mini GPT-40 OpenAl o1-mini OpenAl o1-preview
(2024-03-07) (2024-02-29) (2024-02-29) (2024-06-20)

Figure 3.2.12
Model
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As Al systems become more widely deployed in real-
world settings, understanding how businesses approach
responsible Al has become increasingly important. To explore
this, the Al Index partnered with McKinsey & Company in
2024 to conduct a survey examining the extent to which
businesses integrate RAI into their operations. The survey
defined RAI as a framework for ensuring that Al is developed
and deployed in a safe, trustworthy, and ethical manner. It
assessed RAI along the same key dimensions outlined by the
Al Index: privacy and data governance, fairness, transparency
and explainability, and security and safety. The survey polled
business leaders from over 30 countries and had a total
sample size of 759 respondents.

Figure 3.3.1 visualizes responses to questions asking
organizations which department has primary oversight for
Al governance within their organizations. Notably, no single
department dominated. The most common response was
information security (cyber/fraud/privacy) at 21%, followed
by data and analytics at 17%. Additionally, 14% of respondents
reported having dedicated Al governance roles, signaling
the growing recognition of Al governance as a distinct and

essential function within organizations.

Business functions assigned primary responsibility for Al governance, 2024

Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report

o N -
(cyber/fraud/privacy) N
Arspeciic governarce | -
roles

et ety I -
primarily responsible °

Internal audit/ethics _ 4%
Customer care - 2%
other [l 1+

0% 2% 4% 6% 8%

2 The “Unknown” response option was not shown in this visualization.
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The survey also asked organizations about their approximate
investment in operationalizing RAI over the next vyear,
including both capital and operating expenditures. Examples
of such investments include developing or purchasing
technical systems to comply with RAI principles, as well as
legal or professional services related to RAI. Responses to
this question are visualized in Figure 3.3.2, disaggregated by
organizational revenue size.

Artificial Intelligence
Index Report 2025

P,

Larger enterprises—particularly those with annual revenues
exceeding $10 billion—demonstrated higher total investment
into RAI. Notably, 27% of organizations with $10 billion-$30
billion in revenue and 21% of those exceeding $30 billion invest
$10 million—$25 million in RAI. These findings suggest that
larger organizations are more likely to embed RAIl as a strategic
priority and to make higher absolute investments. Smaller
organizations allocated fewer dollars to RAI, but many still
reported substantial investments as a share of their revenue.

Investment in responsible Al by company revenue, 2024

Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Figure 3.3.3 presents the Al-related RAIl risks that
organizations consider relevant and are actively working to
mitigate. Cybersecurity (66%), regulatory compliance (63%),
and personal privacy (60%) rank as the top concerns, yet
mitigation efforts consistently fall short. Not surprisingly, in
every risk category, fewer organizations take active steps
to mitigate risks than those that recognize them as relevant.
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The gap is particularly pronounced for intellectual property
infringement (57% relevant, 38% mitigated) and organizational
reputation (45% relevant, 29% mitigated). Risks related to
explainability (40%) and fairness (34%) were selected by a
smaller share of respondents, with mitigation rates dropping
further, to 31% and 26%, respectively.

Al risks: considered relevant vs. actively mitigated, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
Considered relevant Actively mitigated

Cybersecurity 66%
Regulatory compliance 63%

Personal/individual privacy 60%

Inaccuracy 60%

Intellectual property infringement
Organizational reputation

Explainability

Al risks

Equity and fairness

Workforce labor displacement
Environmental impact
National security

Political stability

Physical safety

0% 20% 40% 60%
% of respondents
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Figure 3.3.4 and Figure 3.3.5 present data on the number of Al incidents reported by organizations over the past year. Only
8% of surveyed organizations reported experiencing Al-related incidents. Among those affected, the majority—42%—reported
encountering just one or two incidents.

Percentage of organizations that have experienced Al incidents, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report

W Yes No I Unknown

Responses 8% 3%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of respondents

Figure 3.3.4°

Number of Al incidents reported by organizations, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report

42%

30%

i\
o

13%

Number of Al incidents
o
|
©

1%

Unknown

0% 5% 10% 15% 20% 25% 30% 35% 40%
% of respondents

Figure 3.3.5

3 Figure 3.3.4 uses the OECD definition of an Al incident. According to the OECD, an Al incident is defined as an event, circumstance, or series of events where the development, use, or
malfunction of one or more Al systems directly or indirectly results in any of the following harms: (a) injury or harm to the health of individuals or groups; (b) disruption of the management or
operation of critical infrastructure; (c) violations of human rights or breaches of legal obligations intended to protect fundamental, labor, or intellectual property rights; or (d) harm to property,
communities, or the environment.
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When asked about the impact RAI policies have had in their organizations, 42% reported improving business operations, such as

improving efficiency and lowering costs, and 34% reported increasing customer trust (Figure 3.3.6). Only 17% of organizations

feel that the results have had no significant impact.

Impact of responsible Al policies in organizations, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report

Improved business operations

(e.g., efficiency, lower costs)

Increased customer trust

Enhanced brand reputation

Improved business outcomes
(e.g., revenue)

Decrease in number of incidents 22%
Faster time-to-market 18%
No significant impact 17%

Slower time-to-market 12%

29%

28%

42%

34%

0% 5% 10% 15% 20% 25%
% of respondents

30%

35% 40%

Figure 3.3.6*

4 Data for respondents who selected “have not implemented” is excluded. Percentages are based only on those who chose at least one other answer. The “None” response option is not shown.
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Figure 3.3.7 reports the main obstacles organizations noted key challenges. Encouragingly, only 16% reported a lack of
to implementing RAI measures. Respondents primarily cited executive support as a barrier, suggesting that leadership
knowledge and training gaps (51%), resource or budget buy-in is not a major impediment to RAl adoption.

constraints (45%), and regulatory uncertainty (40%) as

Main obstacles to the implementation of responsible Al measures, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report

Organizational resistance _ 22%
Lack of executive support _ 16%

None -3%

Other . 2%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
% of respondents

Figure 3.3.7°

5 The “Unknown” response option was not shown in this visualization.
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Figure 3.3.8 shows the proportion of organizations
influenced by specific Al regulations in their RAI decision
making. Among surveyed organizations, 65% report being
influenced by the EU General Data Protection Regulation
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(GDPR), while 41% cite the EU Al Act. Smaller proportions
indicate influence from the OECD Al Principles (21%) and
President Biden’s Executive Order on Al.

Percentage of organizations influenced by Al regulations in responsible Al decision making

Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Highlight:
Longitudinal Perspective

In collaboration with Accenture, this year a team of
Stanford researchers ran the Global State of Responsible
Al survey, the second iteration of the inaugural survey
launched in 2024. Responses from 1,500 organizations,
each with revenues of at least $500 million, were collected
from 20 countries and 19 industries in January—February
2025.° The objective of the survey was to gain an
understanding of the challenges of adopting RAI principles
and practices and to provide a comparison of RAI activities
across 10 dimensions over time. Because the RAI survey
was conducted in both 2024 and 2025, the data enables
a comparison of how organizational perspectives on RAI
adoption have evolved over time.

Figure 3.3.9 presents the types of incidents reported by
organizations in the RAl survey. The most common issues—
adversarial attacks and privacy violations—underscore
the urgent need for organizations to prioritize Al system
security and robust data governance. Additionally, with
51% of respondents reporting unintended decision making
and 47% citing model bias, there is ample evidence that
many organizations are struggling to anticipate and control
Al behavior—an especially troubling challenge in high-
stakes environments.

Al-related types of incidents reported by organizations in the past two years

Source: Accenture/Stanford Joint Survey, 2025 | Chart: 2025 Al Index report

Adversarial attack

Privacy violation
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6 Details about the survey methodology can be found in Reuel et al. (2024).
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Highlight:
Longitudinal Perspective (cont’d)

Given their Al adoption strategy—whether, for instance,
they develop, deploy, or use generative or nongenerative
Al—respondents were asked which risks were relevant
to their organization. They were presented with a list of
14 risks and could select all that applied to them (Figure
3.3.10).” Companies have grown significantly more
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concerned in recent years about certain risks—most
notably, financial risks (+38 percentage points), brand and
reputational risks (+16), privacy and data-related risks (+15),
and reliability risks (+14). Conversely, some risks are now
considered less pressing, including societal risks (-7) and
socio-environmental risks (-8).

Relevance of selected responsible Al risks for organizations, 2024 vs. 2025

Source: Accenture/Stanford Joint Survey, 2025 | Chart: 2025 Al Index report

Privacy and data-related risks (e.g.,
reidentification of anonymized data,
data leakage, use of data without
consent)

Reliability risks (e.g., output errors,

hallucinations)

Compliance and lawfulness risks (e.g.,
IP or copyright violations)

Security risks (e.g., adversarial attacks,
model theft)

Financial risks (e.g., lack of Al-related
ROI, Al-related financial loss)

Brand/reputational risks (e.g.,
damage caused to brand by Al-related incident)

Risk category

Human interaction risks (e.g., misuse by users

for the generation of deepfakes or misinformation,
overreliance of users on Al models/systems, or
physical/mental harm due to model/system usage)
Diversity and nondiscrimination risks (e.g.,
fairness concerns, toxicity, discrimination,

and stereotype reproduction)

Client/customer risks (e.g., loss of trust,
market share, or customer satisfaction)

Societal risks (e.g., threats to political
stability, national security concerns)

Socio-environmental risks (e.g., high
carbon footprint of systems, regional pollution)

2024
0% 10% 20% 30% 40% 50% 60%
% of respondents
Figure 3.3.10

7 The full list of risks can be found in the corresponding paper.

O Table of Contents

9 Chapter 3 Preview



https://arxiv.org/pdf/2410.09985

| I Artificial Intelligence
HI Index Report 2025

Chapter 3: Responsible Al
3.3 RAl in Organizations and Businesses

Highlight:
Longitudinal Perspective (cont’d)

The definitions of organizational and operational ~ Organizational and operational maturity model
Source: Reuel et al., 2024

maturity are highlighted in Figure 3.3.11. Between
2024 and 2025, organizational RAIl maturity
advanced notably, with more companies
securing CEO support for RAI initiatives and
improving Al risk identification, monitoring,
and control—signaling a stronger recognition
of RAI’s strategic importance (Figure 3.3.12).2 In
contrast, operational RAIl maturity—focused on
practical, system-level safeguards such as bias
reduction, adversarial testing, and environmental
impact measurement—Ilagged behind (Figure
3.3.13). This gap highlights a disconnect between
high-level RAI commitments and their technical
implementation. While organizations are
increasingly equipped and motivated to embed

Figure 3.3.11
RAI into processes and policies, translating that
intent into effective system-level risk mitigation
remains a persistent challenge
Organizational responsible Al maturity distribution, Operational responsible Al maturity distribution,
2024 vs. 2025 2024 vs. 2025
Source: Accenture/Stanford Joint Survey, 2025 | Chart: 2025 Al Index report Source: Accenture/Stanford Joint Survey, 2025 | Chart: 2025 Al Index report
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8 Organizational and operational RAI maturity were calculated as defined in Reuel et al. (2024).
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Highlight:
Longitudinal Perspective (cont’d)

Respondents were also asked about their organization’s
attitudes and philosophies toward RAI, including views on
risk ownership, model preferences, and policy positions
(Figure 3.3.14). Across nearly all statements, responses
were fairly evenly split, even on high-profile issues such
as the safety of open- versus closed-weight models, and
whether responsibility for risk mitigation lies with model
providers or users. This broad distribution suggests that

industry lacks a unified strategic direction on RAl—likely
a reflection of ongoing debates and unresolved questions
among experts. The one clear exception is the trade-off
between safety and innovation: 64% of respondents lean
toward a safety-first approach, and yet 58% are exploring
minimally supervised agents, which may introduce
significant risks—particularly given the current limitations
in RAI maturity.

Organizational attitudes and philosophies surrounding responsible Al
Source: Accenture/Stanford Joint Survey, 2025 | Chart: 2025 Al Index report
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3.4 RAIl in Academia

For this year’s report, the Al Index analyzed the number of
responsible Al-related papers accepted at six leading Al
conferences: AAAI, AIES, FAccT, ICML, ICLR, and NeurlPS.
While these conferences do not represent all responsible Al
research globally, they provide insight into publication trends
among Al academics. This section presents aggregate trends
in Al publications, with subsequent sections breaking them
down by RAI subtopics. In order to identify RAI papers, the Al
Index selected papers that contained certain RAI keywords.®
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Aggregate Trends

The number of RAl papers accepted at leading Al conferences
rose by 28.8%, from 992 in 2023 to 1,278 in 2024 (Figure
3.4.1).

Number of responsible Al papers accepted at select Al conferences, 2019-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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9 A full methodological description of this approach can be found in the Appendix.
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Proportionally, the conferences with the highest share of
accepted RAI papers relative to total submissions were FAccT
(69.14%) and AIES (63.33%) (Figure 3.4.2). This aligns with
their focus: FAccT is dedicated to fairness, accountability, and
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transparency, while AIES centers on Al ethics and society. At
NeurlPS, the proportion decreased from 13.8% in 2023 to
9.0% in 2024, while at ICML, it rose from 3.4% to 8.2% over
the same period.

Responsible Al papers accepted (% of total) at select Al conferences by conference, 2019-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figures 3.4.3 through 3.4.5 examine the geographic affiliation
of RAI papers, highlighting where these papers originate.
In 2024, the United States led in RAI paper submissions
with 669, followed by China with 268 and Germany with
80. Across major geographic regions, RAl has become

Number of responsible Al papers accepted at select

Al conferences by geographic area, 2024
Source: Al Index, 2025 | Chart: 2025 Al Index report
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an increasingly significant academic focus. Since 2019,
the overall geographic distribution of RAIl publications
has remained relatively consistent, with the United States
accounting for the most (3,158), followed by China (1,100) and
the United Kingdom (485).

Number of responsible Al papers accepted at select

Al conferences by select geographic area, 2019-24
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Topic Area

This section examines trends in RAIl publications spanning key
topics: privacy and data governance, fairness, transparency
and explainability, and security and safety.

| I Artificial Intelligence
HI Index Report 2025

Over the past year, the number of accepted papers on privacy
and data governance topics decreased by 14.5% at select Al
conferences (Figure 3.4.6). Since 2019, this figure has risen
nearly fivefold.

Al privacy and data governance papers accepted at select Al conferences, 2019-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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10 These figures likely underestimate the total number of Al privacy papers, as some are published in Al-focused conferences dedicated to privacy, such as the 46th IEEE Symposium on

Security and Privacy.
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In 2024, the number of fairness and bias papers accepted at select Al conferences saw a significant increase, reaching 408—
roughly two times the 2023 figure (Figure 3.4.7). This growth highlights the increasing academic interest in fairness and bias
among researchers.

Al fairness and bias papers accepted at select Al conferences, 2019-24
Source: Al Index, 2025 | Chart: 2025 Al Index report
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3.4 RAIl in Academia

Since 2019, the number of papers on transparency and explainability submitted to major academic conferences has increased by
a factor of four. In 2024, there were 355 transparency and explainability—related submissions at academic conferences including
AAAI, FAcCT, AIES, ICML, ICLR, and NeurlPS (Figure 3.4.8).

Al transparency and explainability papers accepted at select Al conferences, 2019-24
Source: Al Index, 2025 | Chart: 2025 Al Index report
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3.4 RAIl in Academia

The number of security and safety submissions to select Al conferences has sharply increased, almost doubling in the past
year—from 276 to 521 (Figure 3.4.9). This growth reflects the increasing prominence of security and safety as a key focus for
responsible Al researchers.

Al security and safety papers accepted at select Al conferences, 2019-24
Source: Al Index, 2025 | Chart: 2025 Al Index report
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3.5 RAIl Policymaking

While 2023 and early 2024 saw a proliferation of national
Al strategies and regulatory approaches, a notable trend in
2024 was the increased global cooperation on Al governance,
especiallyaroundlegislating principles pertainingtoresponsible
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sought to establish global frameworks for responsible and
ethical Al. These efforts signal a shift toward coordinated
global action rather than isolated national initiatives. Figure
3.5.1 highlights several significant international policymaking

Al. International bodies and multilateral agreements have initiatives or dialogues on RAI that were recently launched."

Notable RAI policymaking milestones
Source: Al Index, 2025

Date Stakeholders Scope Description

May 2024 OECD Global The OECD updated its Al principles and refined its framework to reflect the latest
advancements in Al governance. These principles emphasized building Al systems that take
into account inclusive growth, transparency, and explainability, as well as respect for the rule

of law, human rights, and democratic values.

May 2024 The Council of Europe adopted a legally binding Al treaty (The Council of Europe Framework
Convention on Atrtificial Intelligence and Human Rights, Democracy, and the Rule of Law). This
treaty was drafted to ensure that the activities within the life cycle of Al systems completely

align with human rights, democracy, and the rule of law.

Council of
Europe

Europe

Jun 2024 The EU passed the Al Act (EU Al Act), the first comprehensive regulatory framework for Al
in a major global economy. The act categorizes Al by risk, regulating them accordingly and

ensuring that providers—or developers—of high-risk systems bear most of the obligations.

The African Union launched its Continental Al Strategy (AU Al Strategy), outlining a unified

vision for Al development, ethics, and governance across the continent. The strategy
empbhasizes the ethical, responsible, and equitable development of Al within Africa.

European Union | Europe

Jul 2024 African Union Africa

Sep 2024 United Nations Global The United Nations updated its Governing Al for Humanity report (U.N. Al Advisory Body),
outlining efforts to establish global Al governance mechanisms. The report recommends
developing a blueprint to address Al-related risks and calls on national and international
standards organizations, technology companies, civil society, and policymakers to collaborate

on Al standards.

Oct 2024 G7 Global The G7 Digital Competition Communiqué (G7 Al Cooperation) reaffirmed commitments to
fair and open Al markets, stressing the need for coordinated regulatory approaches. Previous

discussions focused on competition and the regulatory challenges posed by Al’s rapid growth.

Oct 2024 ASEAN and US Asia

and US

Following the 12th ASEAN-United States Summit, ASEAN-U.S. leaders issued a statement
on promoting safe, secure, and trustworthy Al. They committed to cooperating on the
development of international Al governance frameworks and standards to advance these goals.

The first International Network of Al Safety Institutes was established, bringing together

nine countries and the EU to formalize global Al safety cooperation. The network unites
technical organizations committed to advancing Al safety, helping governments and societies
understand the risks of advanced Al systems, and proposing solutions.

International Global
Network of Al
Safety Institutes

Nov 2024

Feb 2025 Arab League Arab

Nations

The Arab Dialogue Circle on “Artificial Intelligence in the Arab World: Innovative
Applications and Ethical Challenges” launched at the Arab League headquarters, focusing on
Al innovations while placing a strong emphasis on ethical considerations.

Figure 3.5.1

11 While Al policymaking is the focus of Chapter 6: Policy and Governance, the Al Index highlights key RAIl-related policymaking events here due to their recent significance.
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3.6 Privacy and Data Governance

A comprehensive definition of privacy is difficult and context-
dependent. For the purposes of this report, the Al Index defines
privacy as an individual’s right to the confidentiality, anonymity,
and protection of their personal data, along with their right
to consent to and be informed about if and how their data is
used. Privacy further includes an organization’s responsibility
to ensure these rights if they collect, store, or use personal
data (directly or indirectly). Moreover, individuals should have
the right to correct their sensitive information if organizations
or governments have misrepresented this information. In
Al, this involves ensuring that personal data is handled in a
way that respects individual privacy rights—for example, by
implementing measures to protect sensitive information from
exposure, and ensuring that data collection and processing are
transparent and compliant with privacy laws like GDPR.

Data governance, on the other hand, encompasses policies,
procedures, and standards established by an organization
to ensure the quality, security, and ethical use of data within
and outside of the organization where it was created. Data
governance policies may also cover data acquired from

external sources. In the context of Al, data governance is
important for ensuring that the data used for training and
operating Al systems is accurate, fair, and used responsibly
and with consent. This is especially the case with sensitive or
personally identifiable information (PII).

Featured Research

This section highlights significant recent research on privacy
and data governance, including studies on auditing dataset
licensing and attribution, as well as research on stricter data
consent protocols.
Large-Scale Audit of Dataset
Attribution in Al

Current foundation models are being trained on massive

Licensing and

amounts of data. A team of researchers conducted a large-
scale audit of over 1,800 text datasets widely used for training
such models and uncovered systemic issues in dataset
licensing and attribution. The researchers found that more
than 70% of datasets on popular dataset hosting sites lacked
adequate license information, while 50% of the licenses were

Accuracy of dataset license classifications by select aggregators

Source: Longpre et al., 2025 | Chart: 2025 Al Index report
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miscategorized, which poses risks for the responsible usage of
that data. Figure 3.6.1 provides a detailed visualization of the
researchers’ findings. Specifically, they assigned license labels
to datasets across four categories: commercial, unspecified,
noncommercial, and academic-only. They then compared
their classifications with those from popular sources such as
GitHub, Papers with Code, and Hugging Face. Oftentimes,
the data license attributions assigned by the data provenance
team differed sharply from those issued by other organizations.

License misattribution in datasets is significant because it
creates legal and ethical risks in Al development. If datasets
usedtotrain foundation models are mislabeled or misattributed,
Al developers may unknowingly violate copyright laws, data
usage policies, or privacy regulations. This can lead to legal
liabilities, challenges in ensuring fair compensation for data
creators, and potential biases in models due to the exclusion
of properly licensed data. Additionally, unclear licensing can
hinder transparency, accountability, and reproducibility in
Al research, which can make it difficult for researchers and
organizations to verify or audit model training data. Based
on their findings, the authors highlight the need for clear
documentation, improved standards, and responsible licensing
practices to foster inclusivity and mitigate risks that stem from
irresponsible or unlawful data uses in Al development and
deployment.

Data Consent in Crisis

Al models rely heavily on massive, publicly available web data
for training. A recent study conducted a longitudinal audit
of consent protocols for web domains used in Al training
datasets, including C4, RefinedWeb, and Dolma, analyzing
14,000 web domains. These consent protocols define the
permissibility of data scraping for Al model training.

The researchers observed a significant increase in data use
restrictions between 2023 and 2024, as many websites
implemented new protocols to limit data scraping for Al
training. These restrictions were primarily enforced through
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updates to robots.txt files and terms of service, explicitly
prohibiting Al training use. Figure 3.6.2 shows the proportion
of websites with robots.txt restrictions, terms-of-service
restrictions, and organizational restrictions over time.” For
example, the proportion of tokens in the top C4 web domains
with full restrictions increased from 10% in 2017 to 48% in
2024. Between 2023 and 2024 alone, this proportion rose by
25 percentage points. Figure 3.6.3 visualizes the percentage
of tokens in the top web domains of C4 by terms-of-service
restriction category from 2016 to 2024. This diminishing
consent is likely related to legal issues around fair use, such
as the New York Times lawsuit against OpenAl.

OpenAl’s crawlers encounter the highest level of restrictions,
while smaller developers face fewer barriers. The authors
highlight inconsistencies in enforcement, driven by ineffective
signaling mechanisms like robots.txt and mismatches between
stated and enforced policies. These findings highlight the
need for updated consent protocols that address Al-specific
challenges. Additionally, the study suggests a decline in publicly
available web data for Al training, with potential consequences
for data diversity, model alignment, and scalability. Many recent
Al performance gains stem from training on increasingly large
datasets. If websites become significantly more restrictive, it
could hinder future model scaling.

12 A robots.txt restriction refers to a rule set in a website’s robots.txt file that instructs web crawlers (such as search engine bots or Al data scrapers) on which parts of the site they are allowed

or forbidden to access.
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Percentage of tokens in the top web domains of C4 by robots.txt restriction category, 2016-24
Source: Longpre et al., 2025 | Chart: 2025 Al Index report
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Percentage of tokens in the top web domains of C4 by terms of service restriction category, 2016-24
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3.7 Fairness and Bias

Fairness in Al emphasizes developing systems that are
equitable and avoid perpetuating bias or discrimination
against any individual or group. It involves considering the
diverse needs and circumstances of all stakeholders impacted
by Al use. Fairness extends beyond a technical concept and
embodies broader social standards related to equity.

3.7 Fairness and Bias
Featured Research

This section highlights research on the impact of racial
classification in multimodal models and the measurement of
implicit bias in explicitly unbiased LLMs.

Racial Classification in Multimodal Models

Recently, researchers have explored how dataset scaling
affects racial and gender biases in vision-language models
(VLMs). Evaluating 14 VLMs trained on LAION-400M and
LAION-2B (popular datasets for training vision-language
models) using the Chicago Face Dataset (CFD), the study
found that while models trained on larger datasets improve
human classification—reducing  misidentification  of
nonhuman entities like gorillas or orangutans—they also

amplify racial biases, especially in larger models. For instance,
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in the larger ViT-L models, Black and Latino men were
disproportionately classified as criminals, with classification
probabilities increasing by up to 69% as dataset size grew
from 400 million to 2 billion samples. Figure 3.7.1 displays
various images alongside the model’s classification scores
for whether a face was identified as a criminal.

Figure 3.7.2 illustrates how the probability of a face being
assigned a specific label (such as animal or criminal) changes
by demographic group across various models (the smaller
ViT-B-16 and ViT-B-32 with the larger ViT-L-14) as the
pretrained dataset scales from 400 million to 2 billion images.
A higher percentage indicates a greater likelihood of a
demographic group being associated with a particular label,

Faces and their likelihood of being classified as “criminal” by model and dataset sizes

Source: Birhane et al., 2024
Figure 3.71
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while a lower percentage signifies a lesser likelihood. In the
larger model, ViT-L, increasing the training data consistently
raises the likelihood of an image being classified as a criminal.
This finding is significant, as many model developers have
soughtto aggressively scale their modelsin an attemptto drive
performance improvements. The researchers suggest that

P,

when it comes to vision models, scaling may also introduce
other unintended bias problems. The authors suggest that
stereotypes in the training data may explain these results.
To address this bias, they advocate for transparent dataset
curation, detailed hyperparameter documentation, and open
access for independent audits.

Effect of dataset scaling on model predictions across demographic groups

Source: Birhane et al., 2024 | Chart: 2025 Al Index report
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13 The y-axis labels represent different ethnic groups: Black male (BM), Black female (BF), Latino male (LM), Latina female (LF), white male (WM), white female (WF), Asian male (AM), and

Asian female (AF).
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Measuring Implicit Bias in Explicitly Unbiased LLMs
In 2024, a team of researchers investigated implicit biases in
LLMs, particularly in those explicitly designed to be unbiased.
This research is important, as efforts to mitigate bias in LLMs
may still not sufficiently solve issues of implicit bias. Figure
3.7.3 illustrates an example of this phenomenon.

The study’s authors make two key contributions. First, they
introduce two new methods for detecting bias in LLMs: LLM
Implicit Bias, which identifies subtle biases by analyzing
automatic associations between words or concepts, and
LLM Decision Bias, which captures model behaviors that
reflect these implicit biases. Second, they investigate relative
discriminatory patterns in decision-making tasks. Applying
their methods to eight notable models—including GPT-4 and
Claude 3 Sonnet—across 21 stereotype categories (e.g., race,
gender, religion, and health), they uncover systemic implicit

Example of implicit bias in LLMs
Source: Bai et al., 2024
Figure 3.7.3
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biases that align with societal stereotypes. Figure 3.7.4 presents
the implicit bias scores of various LLMs across different
stereotype categories.* A score significantly above or below
50% indicates a bias toward or against a particular group.

Figure 3.7.4 suggests that LLMs disproportionately associate
negative terms with Black individuals and are more likely
to associate women with humanities over STEM fields.
The research also finds that LLMs favor men for leadership
roles, reinforcing gender biases in decision-making contexts.
Additionally, the study reveals that as models scale, implicit
biases increase, though decision bias and rejection rates
do not. This finding is significant, as it indicates that while
bias appears to have decreased on standard benchmarks—
creating an illusion of neutrality—implicit biases remain
pervasive, potentially leading to subtle yet meaningful
discriminatory outputs.

14 This research examines both implicit and decision bias; however, only implicit bias is documented here for concision. Decision bias, for reference, is defined as a model’s bias relative to an

unbiased baseline of 50%.
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Chapter 3: Responsible Al
3.8 Transparency and Explainability

Transparency in Al encompasses several

aspects. Data and model transparency

involve the open sharing of development

choices, including data sources and

algorithmic decisions. Operational

transparency details how Al systems 3.8 Tra nSpa rency and
are deployed, monitored, and managed ° o e

in practice. While explainability often EXp I a I n a b I | I‘ty

falls under the umbrella of transparency,

providing insights into the Al’s decision-

making process, it is sometimes treated Fea‘tu red Resea rCh

as a distinct category. This distinction
underscores the importance of Al
being not only transparent but also
understandable to users and stakeholders.
For the purposes of this chapter, the led project tracking transparency in model development and deployment. It

Foundation Model Transparency Index v1.1
The Foundation Model Transparency Index vi.1is the second iteration of a Stanford-

Al Index includes explainability within evaluates major Al model developers across three dimensions: upstream, covering
transparency, defining it as the capacity to

comprehend and articulate the rationale . o
Selfind A decifions. the core Al system; and downstream, encompassing applications and deployments.

components like data and compute used for training; the model itself, referring to

The latest edition reports a notable rise in transparency among foundation model
developers over six months. Figure 3.8.1 reports the FMTI scores for major model
developers in the May 2024 release of the index, and Figure 3.8.2 reports scores
across major dimensions of transparency for each developer.

Foundation Model Transparency Index Scores by Domain, May 2024

Source: May 2024 Foundation Model Transparency Index

servicenow.  StarCoder S —— 55
)X( ALEPHALPHA | uminous I . S
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Granite I D 64
B Microsoft  Phi-2 I R 62
Llama 2 I — 60
stability.ai Stable Video Diffusion N D 58
WRITER Palmyra-X I . 56
Mistral 7B I N S5
Claude 3 [ — 51
GPT-4 I R 49
Gemini 10 Uttra | A 47 o opetream
Titan Text Express |GG 42 B Downstream
Fuyu-8B [IINN N 33
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Score

Figure 3.8.1
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Chapter 3: Responsible Al
3.8 Transparency and Explainability

Compared to the inaugural v1.0 index from October 2023,
which recorded an average transparency score of 37 out of
100, v1.1 saw scores increase to 58 out of 100, largely due
to developers disclosing previously nonpublic data through
submitted reports. Developers improved their scores across
89 of 100 transparency indicators, yet significant opacity
remains in areas such as data access, copyright status, and

| I Artificial Intelligence
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downstream impact. Open-source developers outperformed
closed-source counterparts on upstream transparency,
particularly in data and labor disclosures. Projects like
the FMTI are valuable in that they provide a longitudinal
perspective on the state of transparency in the Al ecosystem.
At the moment, the findings suggest that transparency is
improving.

Foundation Model Transparency Index Scores by Major Dimensions of Transparency, May 2024

Source: May 2024 Foundation Model Transparency Index
NG mmrmana

Titan Text

Express Claude 3

Luminous StarCoder Ultra

40%

Jurassic-2
60%

Fuyu-8B

Data

Labor 43% 1%
Compute
Methods
Model Basics
Model Access
Capabilities
Risks
Mitigations

Distribution

Major Dimensions of Transparency

Usage Policy

Feedback
Impact 29%
Average 36% 73% 76% 43% 53% 86% 53%
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67% 62% 66% 62% 49% 58% 57%

Figure 3.8.2"

15 Data, labor, compute, and methods were upstream indicators; model basics, access, capabilities, risks, and mitigations were model-level indicators; and distribution, usage policy,

feedback, and impact were downstream indicators.

9 Chapter 3 Preview

O Table of Contents




Chapter 3: Responsible Al
3.9 Security and Safety

This section explores three distinct
aspects of security and safety. First,
guaranteeing the integrity of Al systems
involves protecting components such
as algorithms, data, and infrastructure
against external threats like cyberattacks
or adversarial attacks. Second, safety
involves minimizing harms stemming from
the deliberate or inadvertent misuse of Al HELM Safety
systems. This includes concerns such as
the development of automated hacking
tools orthe utilization of Al in cyberattacks.
Lastly, safety encompasses inherent risks
from Al systems themselves, such as
reliability concerns (e.g., hallucinations)
and potential risks posed by advanced Al
systems.

P,

3.9 Security and Safety

Benchmarks

Recently, academic institutions have taken the lead in addressing gaps in Al safety
benchmark standardization. Notably, Stanford’s Center for Research on Foundation
Models (CRFM) recently introduced HELM Safety, a benchmarking suite designed
to evaluate Al models against responsibility and safety metrics. HELM Safety
tests a wide range of recent models from nearly all major developers across
several responsible Al and safety benchmarks, including BBQ, SimpleSafetyTests,

HarmBench, AnthropicRedTeam, and XSTest.

BBQ measures social bias related to protected classes under
U.S. antidiscrimination laws, while SimpleSafetyTests assesses
risks related to self-harm, physical harm, and child sexual abuse
material. HarmBench evaluates responses to prompts involving
harassment, chemical weapons production, and misinformation
using red-teaming techniques. AnthropicRedTeam examines
how models handle adversarial conversations designed to
test harmfulness, and XSTest measures the trade-off between

helpfulness and harmlessness by testing false refusals of
benign prompts and compliance with subtly harmful ones. By
introducing a standardized approach, HELM Safety provides a

HELM Safety: mean score
Source: HELM, 2025 | Chart: 2025 Al Index report

more transparent and comparable framework for assessing Al
models’ responsible behavior.

Figure 3.9.1 presents the mean safety scores of various models
across all tested benchmarks, where a higher score indicates
a safer model. According to the benchmark, the safest model
currently is Claude 3.5 Sonnet, scoring 0.977, followed
closely by o1 at 0.976. Over time, some models appear to be
becoming safer. For example, GPT-3.5 Turbo (0613), released
in 2022, scored 0.853—0.123 points lower than OpenAl’s best-
performing model today.
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AIR-Bench

AlIR-Bench 2024 is a new safety benchmark that aligns
Al evaluation with real-world regulatory and corporate
frameworks. It employs a four-tier taxonomy (system and
operational risks, content safety risks, societal risks, and legal
and rights risks). Among these four broad risk categories are
314 granular microrisks. The risks studied in the benchmark
are derived from eight significant government regulations
and 16 corporate policies. As such, AIR-Bench is designed to
assess model safety through the lens of real-world Al risks
identified by businesses and government entities.

AlIR-Bench evaluates models based on their refusal rates—
the frequency with which they decline to respond to a given

AIR-Bench: refusal rate
Source: Zeng et al., 2024 | Chart: 2025 Al Index report
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P,

prompt due to safety, ethical, or compliance concerns.
Assessments of 22 leading models revealed significant
variability, with refusal rates ranging from 91% (Anthropic’s
Claude series) to 25% (DBRX Instruct) (Figure 3.9.2). Figure
3.9.3 visualizes refusal rates across various risk categories.
The results of AIR-Bench 2024 highlight widespread
misalignment between current models and key global
regulations, such as the EU Al Act and the U.S. Executive
Order on the Safe, Secure, and Trustworthy Development
and Use of Al. While some models demonstrated strong
safeguards in areas like hate speech and child harm, broader
inconsistencies point to the need for targeted improvements,
particularly in automated decision-making contexts.
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AIR-Bench: refusal rate across select risk categories

Source: Zeng et al., 2024 | Chart: 2025 Al Index report
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Featured Research

Beyond Shallow Safety Alignment
In 2024, an interdisciplinary team of computer scientists
introduced the concept of shallow safety alignment—the

idea that Al systems are often trained to be safe in superficial
and ineffective ways. In many cases, a model’s safeguards
are limited to its first few words (tokens) of response. As a
result, if a user manipulates the model to start with anything
other than a standard safety warning (e.g., “Your request
violates our terms of service”), the rest of the response
becomes significantly more vulnerable to adversarial attacks.
For example, if a user directly asks how to build a bomb,
the model will likely refuse to answer. However, if the same
request is framed in a way that induces the model to begin
its response with “Sure, here’s a detailed guide,” it is far more
likely to continue generating harmful content.

| I Artificial Intelligence
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Experiments show that even minor modifications can
drastically weaken a model’s safety mechanisms. For example,
simply prefilling a model’s response with nonstandard text or
applying minimal fine-tuning increased harmful output rates
from 1.5% to 87.9% after just six fine-tuning steps.” Figure 3.9.4
shows the success rate of different attacks on various models
based on the number of harmful tokens prefilled or inserted
into the model’s inference sequence. To address this issue,
researchers proposed two key solutions: expanding training
data to include examples where the model learns to recover
from harmful responses and redirect them toward safe refusals,
and regularizing initial word choices, ensuring that even if the
model starts with an unusual response, it still maintains its
safety constraints. These techniques significantly improved
resistance to adversarial attacks, lowering attack success rates
to as little as 2.8% in certain cases. This research highlights a
need for deeper and more resilient alignment strategies to
prevent the manipulation of Al safety mechanisms.

Attack success rate vs. number of prefilled harmful tokens in LLMs

Source: Qi et al., 2024 | Chart: 2025 Al Index report
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Figure 3.9.4

16 A fine-tuning step in Al refers to an iteration in the process of training a pretrained model on a smaller, domain-specific dataset to improve its performance on a particular task.
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Improving the Robustness to Persistently Targeted latent adversarial training in LLMs

. . Source: Sheshadri et al., 2024
Harmful Behaviors in LLMs Figure 9.5

The challenge in eliminating harmful behavior in

LLMs is that traditional training methods often

teach models to conceal such behavior rather

than removing it entirely. A new approach,

targeted latent adversarial training (LAT), takes

a more precise strategy by actively exposing a

model’s weaknesses during training to make it

more robust against adversarial attacks (Figure

3.9.5). This method outperforms previous

techniques—such as R2D2—while requiring

far less computing power. For example, in

tests against jailbreaking attempts (where

users try to bypass a model’s safeguards), LAT

reduced computational costs by 700 times

while maintaining strong performance on reducing vulnerability to adversarial attacks (Figure 3.9.6). This finding on
regular tasks. For the Llama3-8B-instruct model efficiency is important because if improving model safety requires more
family, LAT preserved strong performance on computational resources while reducing performance, fewer developers
benchmarks like MMLU while significantly are likely to adopt these safety-improving methods.

General performance on nonadversarial data
Source: Sheshadri et al., 2024 | Chart: 2025 Al Index report
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LAT also proved effectiveinremoving backdoorvulnerabilities,
a type of attack where an Al model is subtly modified during
training to produce unintended—and possibly malicious—
behavior when triggered by specific inputs. Notably, LAT
eliminated these vulnerabilities even without prior knowledge
of the exact trigger. Beyond security improvements, LAT
enhances the ability to erase harmful or copyrighted
knowledge from a model and prevents it from relearning
removed content. For example, LAT significantly reduced a
model’s ability to regenerate copyrighted text (e.g., passages

Model resistance to jailbreaking attacks
Source: Sheshadri et al., 2024 | Chart: 2025 Al Index report
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from Harry Potter) and made it less likely that knowledge
would be relearned compared to baseline methods. When
applied to sensitive knowledge areas such as biological or
cybersecurity risks, LAT effectively weakened knowledge
extraction attacks while still allowing the model to correctly
respond to over 90% of safe and benign requests. Methods
like LAT are important not only because they improve model
safety, but also because they are computationally efficient
and practical to implement.

0.20
0.17
015
0.00 001 0.00
AutoPrompt GCG Many-shot
Attack type
Figure 3.9.7
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3.10 Special Topics on RAI

This section explores RAI's connections with
agentic Al and election misinformation—two
topics that are rapidly gaining prominence.
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3.10 Special Topics on RAI

Al Agents

The development and deployment of Al agents—defined
as “artificial agents with natural language interfaces, whose
function is to plan and execute sequences of actions on
behalf of a user, across one or more domains, in line with the
user’s expectations”—present unique challenges for ensuring
responsible Al. These assistants operate autonomously,
interact dynamically with their environments, and make
decisions that can have significant ethical, legal, and societal
implications. As a result, they require specialized approaches
to address the risks they pose with respect to transparency,
accountability, and reliability; these challenges can be
amplified by the agents’ capacity for learning, adaptation,

and decision making in unstructured or evolving scenarios.

Identifying the Risks of LM Agents With LM-
Simulated Sandboxes

New research highlights that as language-model-powered
tools and agents advance, they also amplify risks such as
data breaches and financial losses. However, current risk
assessment methods are resource-intensive and difficult to
scale. To address this, researchers introduced ToolEmu, an
environment that emulates tool execution to enable scalable
testing and automated safety evaluations (Figure 3.10.1). The
framework includes both a standard emulator for general
risk assessments and an adversarial emulator designed to
stress-test agents in extreme scenarios. Human evaluations

Overview of

ToolEmu
Source: Ruan et al., 2024

Figure 3.10.1
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confirmed that 68.8% of the risks identified by ToolEmu are
plausible real-world threats. Using a benchmark of 36 toolkits
and 144 test cases, the study found that even the most safety-
optimized LM agents failed in 23.9% of critical scenarios, with
errors including dangerous commands, misdirected financial
transactions, and traffic control failures (Figure 3.10.2).
While LM agents show promise in automating complex
tool interactions, their reliability in high-stakes applications
remains a significant concern. Suites like ToolEmu are
important for testing the reliability and safety of Al systems,
such as agents, by providing a platform to evaluate their
performance and assess their real-world risks.

Jailbreaking Multimodal Agents With a Single Image
The promise of artificial agents lies in their ability to act
independently in the world to solve complex tasks. As agents
proliferate, the likelihood of interactions in increasingly
multiagent environments grows, introducing vulnerabilities
that extend beyond those of single agents. In such settings,
unforeseen interactions between agents can amplify risks,
leading to cascading failures, coordination breakdowns, or
adversarial exploitation that would be less likely in isolated
deployments.

New research from Asia explores a multiagent vulnerability
in multimodal large language model (MLLM) systems,
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Failure incidence of LM agents
Source: Ruan et al., 2024 | Chart: 2025 Al Index report
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demonstrating how jailbreaking one agent can trigger a rapid, system-
wide failure. The researchers call this phenomenon “infectious jailbreaks,”
where compromising a single agent causes harmful behavior to spread
exponentially across others. Specifically, they found that injecting just one
adversarialimage (e.g., an image suggesting that human beings are a disease)
into the memory of an MLLM agent could trigger an uncontrolled cascade,
spreading harmful behaviors across interconnected agents without further
intervention. The infectious jailbreak leverages interactions between agents
to compel infected agents to insert adversarial images into the memory
banks of uninfected (benign) agents. In simulations using a network of up
to 1 million LLaVA-1.5-based agents, the infection rate reached near-total
propagation within 27 to 31 interaction rounds (Figure 3.10.3).

While a theoretical containment strategy has been proposed, no practical
mitigation measures currently exist, leaving multiagent systems highly
vulnerable. The compounded risks of deploying interconnected MLLM
agents at scale make this a critical security concern. This research suggests
that while MLLM systems are an exciting avenue of Al research, they are still
highly vulnerable to low-resource jailbreaks.

17 The down arrow on the y-axis indicates that a lower score is better.
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Election Misinformation

2024 was a significant year for elections worldwide, with 4
billion people voting in national elections across countries
including the United States, the United Kingdom, Indonesia,
Mexico, and Taiwan. Last year’s Al Index examined Al’s impact
on elections, focusing on both its potential influence and real-
world examples. This year, the topic is being revisited. While
some reports suggest that Al-driven misinformation has not
had the feared impact, others indicate it still poses a potential
risk. As a result, it is important to continually monitor and
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study Al misinformation, especially as Al systems improve in
capability and grow in prominence.

Al Misinformation in the US Elections
Al could
research highlights ethical concerns surrounding Al-driven

influence elections in various ways. Recent

misinformation and examines their relevance in the recent

U.S. election.

Conceptualization of ethical concerns around Al and information manipulation

Source: Al Index, 2025*

Ethical concern

Description

Example

content, including deepfakes, for purposes such
as sexual exploitation, financial extortion, and
reputational sabotage. Blackmailers leverage
these tools to extract value from victims who,
understandably, struggle to persuasively debunk
the fabricated content.

Liar’s dividend The existence of deepfake technology enables Donald Trump and his supporters falsely claimed that
individuals to deny genuine evidence by claiming the crowd shown in a photo of Kamala Harris’ rally in
it is fake, thereby undermining accountability and Detroit was created using Al.
truth. This phenomenon erodes public trust in
legitimate evidence and fosters an environment
where even verified information is questioned.

Blackmail Al technology is exploited to create fabricated The American Sunlight Project identified more than

35,000 instances of deepfake content depicting
26 members of Congress (25 of them women) on
pornographic sites.

Erosion of trust in evidence

Al-generated content challenges the authenticity
of all digital media, fundamentally undermining the
notion of truth. Hyperrealistic falsifications blur the
line between legitimate and false content, eroding
public confidence in the integrity of information.

The Doppelganger campaign conducted by Russia
involved using cybersquatted domains resembling
legitimate news outlets, populated with Al-generated
articles, to disseminate Russian government
propaganda while concealing its origins and
misleading viewers into believing the content came
from credible media sources.

Reduction of cognitive
autonomy

Al’s capacity to analyze vast datasets enables
advanced voter profiling and microtargeting,
tailoring messages to individual preferences,
behaviors, and vulnerabilities. Al can also exploit
emotional and subconscious triggers, thereby
manipulating individuals’ decision-making
processes.

The fringe candidate Jason Palmer defeated Joe Biden
in the American Samoa primary, in part by leveraging
Al-generated emails, texts, audio, and video. These Al-
driven communications were hyperpersonalized and
emotionally charged, targeting specific voter groups to
influence their choices.

18 This table was compiled by Ann Fitz-Gerald, Halyna Padalko, and Dmytro Chumachenko.
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Exploitation of personal
brands

Deepfake technology is harnessed to create
unauthorized videos or images of well-known
individuals, including celebrities, public figures,
and influencers. By stealing personal brands and
fabricating endorsements, malicious actors aim to
deceive audiences and exploit their trust in these
individuals to lend credibility to false narratives.

Fake celebrity endorsements become the latest
weapon in disinformation wars, sowing confusion
ahead of the 2024 election—for example, Donald
Trump posted an Al-generated picture of Taylor Swift,
falsely claiming she had endorsed his presidential run.

Amplification of hate
speech

Al technologies contribute to the amplification

and normalization of hate speech by creating

echo chambers and filter bubbles. These systems
reinforce preexisting biases and promote divisive
content, as they prioritize user engagement metrics
over ethical considerations.

During a disinformation campaign, Donald Trump and
several of his allies repeatedly promoted an unfounded
conspiracy theory suggesting that Haitian migrants in
Springfield, Ohio, were stealing and eating cats and
dogs. This narrative was further amplified through the
spread of related Al-generated memes designed to
evoke fear of and hostility toward Haitian communities.

Reduction in the
traceability of foreign
operations

Al enables the creation, translation, and
enhancement of linguistically perfect text that is
indistinguishable from human writing, empowering
malicious foreign actors and making their activities
untraceable. Previously, foreign disinformation
campaigns were often identifiable due to grammar
mistakes by nonnative speakers, a vulnerability that
Al-generated content effectively eliminates.

OpenAl disrupted an operation dubbed “Bad
Grammar,” in which accounts linked to Russia used
ChatGPT for comment spamming on Telegram
channels. The messages, tailored with region-specific
language, mimicked diverse demographics and
political views in the United States to manipulate
discourse.

Privacy violations

Al systems often rely on extensive data collection
for training, raising ethical concerns about the
misuse or exposure of personal information.

The lack of robust safeguards in managing
sensitive data can lead to violations of privacy
rights, complicating the ethical landscape of Al
deployment.

A robocall from a fake Joe Biden targeted New
Hampshire Democrats, misleading them about primary
voting. This case highlights how Al-enabled systems
can use personal data to spread disinformation and
infringe on individual privacy of potential voters.

Rest of World 2024 Al-Generated Election Content

Rest of World has been tracking notable cases of Al-
generated election content that occurred across the world in
2024. Their database documents 60 incidents in 15 countries

Rest of World 2024 Al elections: summary statistics
Source: Rest of World, 2025 | Table: 2025 Al Index report

Individual list
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Figure 3.10.4

spanning four media types—audio, image, text, and video—
on 10 different platforms, including Facebook, Instagram, and
TikTok. Figure 3.10.5 provides further details.

Bangladesh, Belarus, China, India,
Indonesia, Mexico, Pakistan, Panama,
South Africa, South Korea, Sri Lanka,
Taiwan, United States, Uruguay,
Venezuela

Audio, image, text, video

ChatGPT, Facebook, Instagram,
Medium, Reddit, television, TikTok,
YouTube, WhatsApp, X/Twitter
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The following section highlights five significant cases from
the tracker, offering a qualitative look at the nature of Al-
generated election content in 2024.

Fake corporate support of Mexican politician (Mexico,
image, X/Twitter, Jun. 2, 2024)

On March 18, the civic organization Sociedad Civil de México
encouraged Starbucks to create a special cup to celebrate
Xéchitl Gaélvez, the opposition presidential candidate.
The organization shared an Al-generated image on X of a
Starbucks coffee cup with the inscription “#Xochitl2024,”
along with the hashtag #StarbucksQueremosTazaXG
(#StarbucksWeWantACupXG) (Figure 3.10.6). The next
day, Galvez encouraged her followers on X to order a “café
sin miedo” (coffee without fear), which was a play on her
campaign slogan: “For a Mexico without fear.” She invited
supporters to post photos of their coffee cups and tag her
team on social media. The Al-generated image quickly gained
traction as users posted. Starbucks, however, disavowed the
designs and stated that it does not endorse political parties.

Source: Rest of World, 2024
Figure 3.10.6
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India’s incumbent party motivates campaign workers with
personalized videos (India, video, WhatsApp, Apr. 18,
2024)

On April 18, over 500 campaign volunteers for the incumbent
Bharatiya Janata Party received personalized videos from
a member of the party, created with the help of Al tools. In
the video, BUP member Shakti Singh called on volunteers
to share the party’s message with the public, emphasizing
policies such as “Clean India,” “Digital India,” and “Make In
India” Despite noticeable edits, each video featured Singh
addressing the individual recipient by their name (Figure
3.10.7). Campaign employees involved in making the video
maintained they did not require Singh to record each name
separately but instead relied on a combination of voice-
cloning and lip-matching software.

Source: Rest of World, 2024
Figure 3.10.7
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Uruguay’s ‘impossible’ debate (Uruguay, video, television,
Oct. 27, 2024)

“Santo y Sefia,” a general interest morning show, broadcast
what it called “the impossible debate” ahead of Uruguay’s
presidential election. The debate featured right-wing
Partido Colorado presidential candidate Andrés Ojeda and
his counterpart for the center-left alliance Frente Amplio,
“Yamandu” Orsi (Figure 3.10.8). However, Orsi did not appear
on the show but was “present” through an Al-powered
hologram with a script pulled, according to the show’s host,
from the candidate’s recent interviews. Before the debate
started, Orsi and his party went on another channel to
criticize the stunt as a “fake interview” posing “an attack on
democracy.” The next day, the host responded that the stunt
was neither fake news nor an attack on democracy; it was
merely a joke.

Source: Rest of World, 2024
Figure 3.10.8
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Deepfakes of Pakistani party leaders call for election
boycotts (Pakistan, audio and video, X/ Twitter, Feb. 7, 2024)
The day before Pakistan’s general elections, a voice recording
of former prime minister and founder of the Pakistan Tehreek-
e-Insaf (PTI) party, Imran Khan, emerged on social media
(Figure 3.10.9). The voice referred to a crackdown from state
institutions on the PTI, and the speaker was heard calling for
a boycott of the elections, suggesting that there was no use in
voting. The official X account of the PT| denounced the audio
as fake. A video posted on the same day showed another
notable PTI leader, Yasmin Rashid, apparently also calling for
a boycott. In the clip, Rashid appeared behind bars, and the
audio alleged that Pakistan’s election commission had been
“bought” The nonprofit fact-checking organization Soch
Fact Check determined the video had been doctored.

Source: Rest of World, 2024
Figure 3.10.9
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United States election affected by ‘spamouflage’ campaign
(China and US, image, X/Twitter, Facebook, YouTube,
TikTok, Medium, Feb. 15, 2024)

The Institute for Strategic Dialogue (ISD), a U.K.-based think
tank, uncovered actors suspected of being linked to a Chinese
government—run influence campaign sharing Al-generated
images as part of an effort to spread misinformation ahead
of the 2024 U.S. elections. The “spamouflage” campaign—a
term used to designate online operations leveraging a
network of social media accounts to promote propaganda
or misinformation—had been active since 2017, but it began
to make more noticeable use of Al image generators as it
narrowed its focus on the U.S. election. As part of its campaign,
a network of accounts shared images exacerbating political
polarization and casting doubt on the integrity of elections.
Negative posts were disproportionately targeted at President
Joe Biden (Figure 3.10.10). The ISD highlighted a particular
proliferation of these images on X.

Source: Rest of World, 2024
Figure 3.10.10
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Al-generated potholes seek to influence South African
voters (South Africa, image, X/Twitter, Facebook,
Instagram, Reddit, May 4, 2024)

On May 4, a Facebook user posted an Al-generated image
showing a long road dotted with potholes leading to Cape
Town’s iconic Table Mountain (Figure 3.10.11). The caption under
the image suggested that, under the Democratic Alliance (DA)
party, the municipal government had failed to maintain basic
services, contributing to the deterioration of infrastructure.
Many shared the image to discourage voters in the Western
Cape from supporting the DA, which has managed the
province for 15 years. Though the original post was deleted
from Facebook, it continues to circulate on other social media
platforms. AFP Fact Check, which is housed at the Agence
France-Presse, reported that the image was Al-generated and
traced it to an Instagram user who creates Al art.

Source: Rest of World, 2024
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CHAPTER 4:
Economy

Overview

The economic implications of Al came into sharper focus in 2024, with substantive
impact across many sectors. Early productivity gains from generative Al are becoming
measurable in specific tasks, while questions persist about the technology’s long-term
impact on the broader economy. The labor market has begun to show signs of Al-
driven transformation, with certain knowledge-worker roles experiencing disruption
as new Al-adjacent positions emerge. Companies across sectors and geographical
regions are moving beyond experimental Al adoption toward systematic integration.
Investment patterns reflect a growing sophistication in the Al landscape, with funding
increasingly directed toward specialized applications in enterprise automation and

industry-specific solutions.

This chapter examines Al-related economic trends using data from Lightcast, LinkedIn,
Quid, McKinsey and the International Federation of Robotics (IFR). It begins by analyzing
Al-related occupations, covering labor demand, hiring trends, skill penetration, and
talent availability. The chapter then explores corporate investment in Al, including
a section focused specifically on generative Al. Finally, it assesses Al’'s productivity
impact as well as robot installations across various sectors.
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Chapter Highlights

1. Global private Al investment hits record high with 26% growth. Corporate Al investment reached $252.3 billion
in 2024, with private investment climbing 44.5% and mergers and acquisitions up 12.1% from the previous year. The sector
has experienced dramatic expansion over the past decade, with total investment growing more than thirteenfold since 2014.

2. Generative Al funding soars. Private investment in generative Al reached $33.9 billion in 2024, up 18.7% from 2023
and over 8.5 times higher than 2022 levels. The sector now represents more than 20% of all Al-related private investment.

3. The U.S. widens its lead in global Al private investment. U.S. private Al investment hit $109.1 billion in 2024,
nearly 12 times higher than China’s $9.3 billion and 24 times the U.K’s $4.5 billion. The gap is even more pronounced in
generative Al, where U.S. investment exceeded the combined total of China and the European Union plus the U.K. by $25.4
billion, expanding on its $21.8 billion gap in 2023.

4. Use of Al climbs to unprecedented levels. In 2024, the proportion of survey respondents reporting Al use by their
organizations jumped to 78% from 55% in 2023. Similarly, the number of respondents who reported using generative Al in at
least one business function more than doubled—from 33% in 2023 to 71% last year.

5. Al is beginning to deliver financial impact across business functions, but most companies are early in
their journeys. Most companies that report financial impacts from using Al within a business function estimate the benefits
as being at low levels. 49% of respondents whose organizations use Al in service operations report cost savings, followed by
supply chain management (43%) and software engineering (41%), but most of them report cost savings of less than 10%. With
regard to revenue, 71% of respondents using Al in marketing and sales report revenue gains, 63% in supply chain management,
and 57% in service operations, but the most common level of revenue increases is less than 5%.

6. Use of Al shows dramatic shifts by region, with Greater China gaining ground. While North America
maintains its leadership in organizations’ use of Al, Greater China demonstrated one of the most significant year-over-year
growth rates, with a 27 percentage point increase in organizational Al use. Europe followed with a 23 percentage point
increase, suggesting a rapidly evolving global Al landscape and intensifying international competition in Al implementation.
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Chapter Highlights (cont’d)

7. China’s dominance in industrial robotics continues despite slight moderation. In 2023, China installed
276,300 industrial robots, six times more than Japan and 7.3 times more than the United States. Since surpassing Japan in
2013, when it accounted for 20.8% of global installations, China’s share has risen to 51.1%. While China continues to install
more robots than the rest of the world combined, this margin narrowed slightly in 2023, marking a modest moderation in its

dramatic expansion.

8. Collaborative and interactive robot installations become more common. In 2017, collaborative robots
represented a mere 2.8% of all new industrial robot installations, a figure that climbed to 10.5% by 2023. Similarly, 2023 saw
a rise in service robot installations across all application categories except medical robotics. This trend indicates not just an
overall increase in robot installations but also a growing emphasis on deploying robots for human-facing roles.

9. Al is driving significant shifts in energy sources, attracting interest in nuclear energy. Microsoft announced
a $1.6 billion deal to revive the Three Mile Island nuclear reactor to power Al, while Google and Amazon have also secured
nuclear energy agreements to support Al operations.

10. Al boosts productivity and bridges skill gaps. Last year’s Al Index was among the first reports to highlight
research showing Al’s positive impact on productivity. This year, additional studies reinforced those findings, confirming that
Al boosts productivity and, in most cases, helps narrow the gap between low- and high-skilled workers.
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Chapter 4: Economy
4.1 What’s New in 2024: A Timeline

The chapter begins with an overview of some of the
most significant Al-related economic events in 2024, as
selected by the Al Index Steering Committee.

4.1 What’s New in 2024: A Timeline
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Date Event Type Image
Jan 16, 2024 Synopsys acquires Ansys for $35 billion to improve | Acquisition
silicon-to-systems design solutions.
Figure 4.141
Source: Synopsys, 2024
Feb 21, 2024 Reports claim that OpenAl surpassed $2 billion in Valuation milestone
annualized revenue in December 2023.
Figure 4.1.2
Source: Inc., 2024
Feb 29, 2024 Figure Al, a humanoid robot startup, raises $675 Investment/funding
million at a valuation of $2.6 billion.
Figure 4.1.3
Source: SiliconAngle, 2024
Mar 21, 2024 Microsoft hires most of Inflection Al’s staff, Acquisition
including cofounders, and pays $650 million to
license Inflection’s Al models.
Figure 4.1.4
Source: Reuters, 2024
May 1, 2024 CoreWeave, an Al cloud infrastructure startup, Investment/funding
secures a $1.1 billion funding round at a valuation of
$19 billion.
Figure 4.1.5
Source: Fortune, 2024
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https://www.inc.com/reuters/openai-hits-2-billion-revenue-milestone.html
https://www.inc.com/reuters/openai-hits-2-billion-revenue-milestone.html
https://www.prnewswire.com/news-releases/figure-raises-675m-at-2-6b-valuation-and-signs-collaboration-agreement-with-openai-302074897.html
https://siliconangle.com/2024/02/29/humanoid-ai-driven-robotics-startup-figure-raises-675m-2-6b-valuation/
https://www.bloomberg.com/news/articles/2024-03-21/microsoft-to-pay-inflection-ai-650-million-after-scooping-up-most-of-staff
https://www.reuters.com/technology/microsoft-agreed-pay-inflection-650-mln-while-hiring-its-staff-information-2024-03-21/
https://fortune.com/2024/05/01/what-is-coreweave-ai-startup-19-billion-valuation/
https://fortune.com/2024/05/01/what-is-coreweave-ai-startup-19-billion-valuation/
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May 21, 2024 Scale Al, a data-labeling startup, raises $1 billion Investment/funding
and reaches a valuation of $13.8 billion.
Figure 4.1.6
Source: Reuters, 2024
Jun 11, 2024 Mistral Al, a French open-source Al model startup, | Investment/funding
raises $640 million at a valuation of $6 billion.
Figure 4.1.7
Source: TechCrunch, 2024
Jun 14, 2024 Tempus Al, a precision medicine company Investment/funding
leveraging Al for medical data analysis, goes
public, raising $410.7 million and achieving an
implied valuation of over $6 billion.
Figure 4.1.8
Source: Reuters, 2024
Jul 22, 2024 Cohere, an Al startup specializing in enterprise Investment/funding
applications, raises $500 million in funding at a
valuation of $5.5 billion.
Figure 4.1.9
Source: Crunchbase, 2024
Aug 2, 2024 Google hires Character.Al’s cofounders along with | Acquisition
research team members and licenses the startup’s
Al technology in a deal to buy out Character.Al’s
shareholders for approximately $2.5 billion.
Figure 4.1.10
Source: The Verge, 2024
Aug 5, 2024 Grog, an Al chip startup specializing in fast Investment/funding
inference, raises $640 million at a valuation of $2.8
billion.
Figure 4.1.11
Source: Grog, 2024
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https://www.reuters.com/technology/ai-startup-scale-ai-raises-1-billion-fresh-funding-2024-05-21/
https://techcrunch.com/2024/06/11/paris-based-ai-startup-mistral-ai-raises-640-million/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAgLoou4C3LkgPUE16nUyxfbCNwtUOOa9Bfrm6FQhAHsxBqjtar_CQr-S8ze-G0Ez0FOJORv1bvtSjQ0ku6hlOUyk01XjiYWXJNa9ZoSadxOrnZVYTMphG5Jk47bx-nPW2hoNIm3iHBgBU53nxxtUTfrWz11LIjyPocztdnZkUTD
https://techcrunch.com/2024/06/11/paris-based-ai-startup-mistral-ai-raises-640-million/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAgLoou4C3LkgPUE16nUyxfbCNwtUOOa9Bfrm6FQhAHsxBqjtar_CQr-S8ze-G0Ez0FOJORv1bvtSjQ0ku6hlOUyk01XjiYWXJNa9ZoSadxOrnZVYTMphG5Jk47bx-nPW2hoNIm3iHBgBU53nxxtUTfrWz11LIjyPocztdnZkUTD
https://www.reuters.com/markets/deals/tempus-ai-announces-pricing-us-ipo-2024-06-13/
https://www.reuters.com/markets/deals/tempus-ai-announces-pricing-us-ipo-2024-06-13/
https://news.crunchbase.com/venture/ai-cohere-valuation-rises-psp-cisco-fijitsu/
https://news.crunchbase.com/venture/ai-cohere-valuation-rises-psp-cisco-fijitsu/
https://www.theverge.com/2024/8/2/24212348/google-hires-character-ai-noam-shazeer
https://www.theverge.com/2024/8/2/24212348/google-hires-character-ai-noam-shazeer
https://groq.com/news_press/groq-raises-640m-to-meet-soaring-demand-for-fast-ai-inference/
https://groq.com/news_press/groq-raises-640m-to-meet-soaring-demand-for-fast-ai-inference/
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Aug 12, 2024 AMD acquires Silo Al, Europe’s largest private Al Acquisition
lab, for approximately $665 million.
Figure 4.1.12
Source: AMD, 2024
Sep 5, 2024 Safe Superintelligence (SSI) secures $1 billion in Investment/funding
funding.
Figure 4.1.13
Source: TechCrunch, 2024
Sep 12, 2024 Salesforce launches Agentforce, a suite of Product launch/integration
autonomous Al agents for business operations,
across its platform.
Figure 4.1.14
Source: Salesforce, 2024
Sep 20, 2024 Microsoft announces a $1.6 billion deal with Partnership
Constellation Energy to revive the Three Mile Island
nuclear reactor to power Al data centers.
Figure 4.1.15
Source: NPR, 2024
Oct 2, 2024 OpenAl raises $6.6 billion at a valuation of $157 Investment/funding
billion.
Figure 4.1.16
Source: Axios, 2024
Oct 14, 2024 Google announces an agreement to purchase Partnership
nuclear energy from multiple small modular
reactors (SMRs) developed by Kairos Power.
Figure 4117
Source: Google, 2024
Oct 16, 2024 Amazon announces a nuclear energy plan for SMR | Partnership
development with Energy Northwest, X-energy,
and Dominion Energy.
Figure 4.1.18
Source: Amazon, 2024
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https://www.amd.com/en/newsroom/press-releases/2024-8-12-amd-completes-acquisition-of-silo-ai-to-accelerate.html
https://www.amd.com/en/newsroom/press-releases/2024-8-12-amd-completes-acquisition-of-silo-ai-to-accelerate.html
https://techcrunch.com/2024/09/04/ilya-sutskevers-startup-safe-super-intelligence-raises-1b/
https://techcrunch.com/2024/09/04/ilya-sutskevers-startup-safe-super-intelligence-raises-1b/
https://techcrunch.com/2024/09/04/ilya-sutskevers-startup-safe-super-intelligence-raises-1b/
https://www.salesforce.com/news/press-releases/2024/09/12/agentforce-announcement/
https://www.salesforce.com/news/press-releases/2024/09/12/agentforce-announcement/
https://www.npr.org/2024/09/20/nx-s1-5120581/three-mile-island-nuclear-power-plant-microsoft-ai
https://www.npr.org/2024/09/20/nx-s1-5120581/three-mile-island-nuclear-power-plant-microsoft-ai
https://www.axios.com/2024/10/02/openai-new-funding-round-restructuring
https://www.axios.com/2024/09/20/openai-largest-vc-round
https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement/
https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement/
https://www.aboutamazon.com/news/sustainability/amazon-nuclear-small-modular-reactor-net-carbon-zero
https://www.aboutamazon.com/news/sustainability/amazon-nuclear-small-modular-reactor-net-carbon-zero

Chapter 4: Economy
41 What’s New in 2024: A Timeline

| I Artificial Intelligence
HI Index Report 2025

Oct 17, 2024 Google’s NotebookLM sheds “experimental” label Product launch/integration
and boasts millions of users and 80,000-plus
organizations.
Figure 4.1.19
Source: Google, 2024
Nov 22, 2024 Anthropic expands its partnership with AWS with Partnership
an additional $4 billion investment from Amazon,
bringing the total to $8 billion.
Figure 4.1.20
Source: Anthropic, 2024
Dec 17, 2024 Databricks, an Al data analytics company, raises Investment/funding
$10 billion at a valuation of $62 billion.
Figure 4.1.21
Source: TechCrunch, 2024
Dec 18, 2024 Perplexity Al, a startup focused on Al-powered Investment/funding
search products, raises $500 million at a valuation
of $9 billion.
Figure 4.1.22
Source: Al Magazine, 2024
Dec 23, 2024 xAl announces a $6 billion funding round, bringing Investment/funding
the total to $12 billion at a valuation of over $40
billion.
Figure 4.1.23
Source: Forbes, 2024
Dec 30, 2024 Nvidia acquires Israeli startup Run:ai for $700 Acquisition
million to increase its GPU optimization capability
in demanding computing environments.
Figure 4.1.24
Source: TechCrunch, 2024
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https://blog.google/technology/ai/notebooklm-update-october-2024/
https://blog.google/technology/ai/notebooklm-update-october-2024/
https://www.anthropic.com/news/anthropic-amazon-trainium
https://www.anthropic.com/news/anthropic-amazon-trainium
https://techcrunch.com/2024/12/17/databricks-raises-10b-as-it-barrels-toward-an-ipo/
https://techcrunch.com/2024/12/17/databricks-raises-10b-as-it-barrels-toward-an-ipo/
https://www.bloomberg.com/news/articles/2024-12-18/ai-startup-perplexity-closes-funding-round-at-9-billion-value
https://aimagazine.com/articles/how-perplexity-ai-is-driving-a-new-era-of-ai-native-search
https://www.forbes.com/sites/antoniopequenoiv/2024/12/23/xai-valuation-reaches-over-40-billion-after-6-billion-funding-round/
https://www.forbes.com/sites/antoniopequenoiv/2024/12/23/xai-valuation-reaches-over-40-billion-after-6-billion-funding-round/
https://finance.yahoo.com/news/nvidia-completes-700-million-acquisition-151816718.html
https://techcrunch.com/2024/12/30/nvidia-completes-acquisition-of-ai-infrastructure-startup-runai/
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4.2 Jobs
Al Labor Demand

This section analyzes the demand for Al-related skills in labor
markets, drawing on data from Lightcast. Since 2010, Lightcast
has analyzed hundreds of millions of job postings from over
51,000 websites, identifying those that require Al skills.
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Global Al Labor Demand

Figure 4.2.1 and Figure 4.2.2 show the percentage of job
postings demanding Al skills. In 2024, Singapore (3.2%),
Luxembourg (2%), and Hong Kong (1.9%) led in this metric.
In 2023, Al-related jobs accounted for 1.4% of all American
job postings. In 2024, that number increased to 1.8%. Most
countries saw an increase from 2023 to 2024 in the share of
job postings requiring Al skills.

Al job postings (% of all job postings) by select geographic areas, 2014—24 (part 1)

Source: Lightcast, 2024 | Chart: 2025 Al Index report
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Al job postings (% of all job postings) by select geographic areas, 2014-24 (part 2)

Source: Lightcast, 2024 | Chart: 2025 Al Index report
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Figure 4.2.2
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US Al Labor Demand by Skill Cluster and Specialized Skill

Figure 4.2.3 highlights the most sought-after Al skills in
the U.S. labor market since 2010. Leading the demand was
artificial intelligence at 0.9%, followed closely by machine
learning, also at 0.9%, and natural language processing at

0.2%. Since last year, most Al-related skill clusters tracked
by Lightcast have had an increase in market share, with the
exception of autonomous driving and robotics. Generative Al
saw the largest increase, growing by nearly a factor of four.

Al job postings (% of all job postings) in the United States by skill cluster, 2010-24

Source: Lightcast, 2024 | Chart: 2025 Al Index report
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1A single job posting can list multiple Al skills.
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Figure 4.2.4 compares the top 10 specialized skills sought has increased over the past decade, with Python’s notable
in Al job postings in 2024 versus those from 2012 to 2014.2 increase in popularity highlighting its ascendance as a
On an absolute scale, the demand for every specialized skill preferred Al programming language.

Top 10 specialized skills in 2024 Al job postings in the United States, 2012-14 vs. 2024

Source: Lightcast, 2024 | Chart: 2025 Al Index report

e, 29,213 (+527%)
N, 103,341 (+131%)
[, 125,93 (+208%)
[, 10,41 (+133%)
I, 110,620 (+833%)
I, 102,210 (+361%)
I, 0127 (+87%)
I, 100,581 (+1,778%)

[ <141 (+334%)

Python (programming language)

Computer science

Data analysis

SQL (programming language)

Data science

Automation

Project management

Amazon Web Services

Agile methodology
W 2024
scalaiey | < 550 (+337%) 2012-14
[0] 50,000 100,000 150,000 200,000
Number of Al job postings
Figure 4.2.4

2 The decision to select 2012—-2014 as the point of comparison was due to the scarcity of data at the jobs/skills level from earlier years. Lightcast therefore used 2012—-2014 to have a larger
sample size for a benchmark from 10 years ago with which to compare. Figure 4.2.4 juxtaposes the total number of job postings requiring certain skills from 2012 to 2014 with the total amount
in 2024.
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In 2024, year-over-year U.S. job postings citing generative Al skills increased by more than a factor of three (Figure 4.2.5).
Figure 4.2.6 illustrates the proportion of Al job postings released in 2024 and 2023 that referenced particular generative Al skills.

Generative Al skills in Al job postings in the United States, 2023 vs. 2024
Source: Lightcast, 2024 | Chart: 2025 Al Index report
Generative artificial intelligence 66,635 (+323%)

o
Large language modeling 19,562 (+295%)

ChatGPT 5,664 (+86%)

Prompt engineering 6,263 (+350%)

. . 2,213 (+67%
Generative adversarial networks 3 (+67%)
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0 6,000 12,000 18,000 24,000 30,000 36,000 42,000 48,000 54,000 60,000 66,000 72,000 78,000
Number of Al job postings Figure 4.2.5

Share of generative Al skills in Al job postings in the United States, 2023 vs. 2024
Source: Lightcast, 2024 | Chart: 2025 Al Index report
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Figure 4.2.6
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US Al Labor Demand by Sector

Figure 4.2.7 shows the percentage of U.S. job postings job postings in 2024 compared to 2023, except for public
requiring Al skills by industry sector from 2023 to 2024. Nearly administration.

every sector experienced an increase in the proportion of Al

Al job postings (% of all job postings) in the United States by sector, 2023 vs. 2024

Source: Lightcast, 2024 | Chart: 2025 Al Index report
Information | ©.33% (+79.56%)
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i o (T 5.75 219
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B 2024
Transportation and warehousing I ©.329% (+35.81%) 2023

Waste management and administrative support services I 0.48% (+15.65%)

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%

Al job postings (% of all job postings)
Figure 4.2.7°

3 The sector classifications in Figure 4.2.7 are based on two-digit NAICS codes. For more information on the Bureau of Labor Statistics’ supersector and NAICS classifications, see the
following reference.
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US Al Labor Demand by State
Figure 4.2.8 highlights the number of
Al job postings in the United States
by state. The top three states were
California (103,375), Texas (57,785),
and New York (37,944).

Figure 4.2.9 demonstrates what
percentage of a state’s total job
postings were Al-related. The top
states according to this metric were
the District of Columbia (4.4%),
followed by Delaware (3.4%) and
Washington (3.3%).
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Number of Al job postings in the United States by state, 2024

Source: Lightcast, 2024 | Chart: 2025 Al Index report
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Figure 4.2.8
Percentage of US states’ job postings in Al, 2024
Source: Lightcast, 2024 | Chart: 2025 Al Index report
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Figure 4.2.10 examines which U.S. states Percentage of US Al job postings by state, 2024
accounted for the Iargest proportion Of Source: Lightcast, 2024 | Chart: 2025 Al Index report
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Source: Lightcast, 2024 | Chart: 2025 Al Index report

Figure 4.2.10
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Figure 4.212 shows how Al-related job postings have been Al job postings—a particularly notable change in California
distributed across the top four states over time. In 2024, all and New York, both of which had experienced decreases
four states reversed multiyear declines in their proportion of since 2020.

Percentage of US Al job postings by select US state, 2010-24

Source: Lightcast, 2024 | Chart: 2025 Al Index report

25%

20%

15.70%, California
15%

10%

Percentage of United States Al job postings

\/ 5.76%, New York

5%

0%

2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Figure 4.2.12
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Al Hiring

The hiring data presented in the Al Index is based on
LinkedIn’s Economic Graph, reflecting the jobs and skills
of the platform’s 1+ billion members. As such, the data is
influenced by how members choose to use the platform,
which can vary based on professional, social, and regional
cultures, as well as overall site availability and accessibility.
The Al Index notes that Hungary, Indonesia, India, and South
Korea, included in the sample, have LinkedIn covering a
lower portion of the labor force, so insights drawn about
these countries should be interpreted with particular caution.

Figure 4.2.13 reports the relative Al hiring rate year-over-year
ratio by geographic area. The overall hiring rate is computed
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HI Index Report 2025

as the percentage of LinkedIn members who added a new
employer in the same period the job began, divided by the
total number of Linkedln members in the corresponding
location. Conversely, the relative Al talent hiring rate is the
year-over-year change in Al hiring relative to the overall
hiring rate in the same geographic area.* Therefore, Figure
4.2.13 illustrates Al hiring vibrancy in those regions that have
experienced the most significant rise in Al talent recruitment
compared to the overall hiring rate. In 2024, the countries
with the greatest relative Al hiring rates year-over-year were
India (33.4%), followed by Brazil (30.8%) and Saudi Arabia
(28.7%). This means, for example, that in 2024 in India, the
ratio of Al talent hiring relative to overall hiring grew 33.4%.

Relative Al hiring rate year-over-year ratio by geographic area, 2024

Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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Relative Al hiring rate year-over-year ratio

Figure 4.2.14 showcases the year-over-year ratio of Al hiring
by geographic areas over the past five years. Starting in 2024,
several South American countries like Argentina, Brazil, and

Figure 4.2.13°

Chile have experienced notable upticks in Al hiring rates.
Other countries that have recently experienced similar rises
include Canada, India, South Africa, and the United States.

4 For each month, LinkedIn calculates the Al hiring rate in the geographic area, divides the Al hiring rate by the overall hiring rate in that geographic area, calculates the year-over-year change

of this ratio, and then takes the 12-month moving average using the last 12 months.

5 For brevity, the visualization only includes the top 15 countries for this metric.
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Relative Al hiring rate year-over-year ratio by geographic area, 2018-24
Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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Al Skill Penetration

Figure 4.215 and Figure 4.2.16 highlight relative Al skill
penetration. The aim of this indicator is to measure the
intensity of Al skills in a particular country or by industry or
gender. The Al skill penetration rate signals the prevalence
of Al skills across occupations or the intensity with which
LinkedIn members utilize Al skills in their jobs. For example,
the top 50 skills for the occupation of engineer are calculated
based on the weighted frequency with which they appear in
LinkedIn member profiles. If, for instance, four of the skills
that engineers possess belong to the Al skill group, the

| I Artificial Intelligence
HI Index Report 2025

penetration of Al skills among engineers is estimated to be
8% (4/50).

For the period from 2015 to 2024, the countries with the
highest Al skill penetration rates were the United States (2.6)
and India (2.5). They were followed by the United Kingdom
(1.4), Germany (1.3), and Brazil (1.3). In the United States,
therefore, the relative penetration of Al skills was 2.6 times
greater than the global average across the same set of
occupations.

Relative Al skill penetration rate by geographic area, 2015-24

Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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Figure 4.2.16 disaggregates Al skill penetration rates by
gender across different countries or regions. A country’s
rate of 1.5 for women means female LinkedIn members in
that country are 1.5 times more likely to list Al skills than the
average member in all countries pooled together across the

Relative Al skill penetration rate across gender, 2015-24
Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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same set of occupations in the country. For all countries in
the sample, with the exception of Saudi Arabia, the relative
Al skill penetration rate is greater for men than women. India
(1.9), United States (1.7), and Canada (1.0) have the highest
reported relative Al skill penetration rates for women.
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Al Talent

Figures 4.2.17 and 4.2.18 examine Al talent by country. A Figure 4.217 shows Al talent concentration in various
LinkedIn member is considered to have Al talent if they geographic areas. In 2024, the countries with the highest
have explicitly added Al skills to their profile, work or have concentrations of Al talent include Israel (2.0%), Singapore
worked in Al. Counts of Al talent are used to calculate talent (1.6%), and Luxembourg (1.4%). Figure 4.2.18 looks at the
concentration, or the portion of members who are Al talent. percent change in Al talent concentration for a selection of
Note that concentration metrics may be influenced by countries since 2016. During that time period, several major
LinkedIn coverage in these countries and should be used economies registered substantial increases in their Al talent

pools. The countries showing the greatest increases are India
(252%), Costa Rica (240%), and Portugal (237%).

with caution.

Al talent concentration by geographic area, 2024 Percentage change in Al talent concentration by
Source: LinkedIn, 2024 | Chart: 2025 Al Index report geographic area, 2016 vs. 2024
Israel [ 1.08%  Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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Figure 4.2.17 Figure 4.2.18
There are also notable gender differences in Al talent concentration of Al talent was higher among men than women

concentration. For every country included in the analysis (Figure 4.2.19). Israel reported the highest concentration of

sample, with the exception of India and Saudi Arabia, the female Al talent in 2024, at 1.6%.
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Al talent concentration by gender and geographic area, 2016-24
Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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LinkedIn also tracks the gender distribution of Al talent (Figure 4.2.20). In 2024, it estimates that 69.5% of Al professionals on the
platform are male, while 30.5% are female. This ratio has remained remarkably stable over time.

Global Al talent representation, 2016-24

Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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Figure 4.2.20

LinkedIn’s data on Al talent can also be broken down by country. In every country in the sample, men proportionally outnumber
women in Al roles (Figure 4.2.21). New Zealand and Romania have the most balanced gender distribution, while Brazil and Chile
have the least.
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Al talent representation by gender and geographic area, 2016-24

Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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LinkedIn data provides insights on the Al talent gained or lost the geographic area. Figure 4.2.22 examines net Al talent
due to migration trends.® Net flows are defined as total arrivals migration per 10,000 LinkedIn members by geographic area.
minus departures within the given time period. A positive net The geographic areas that report the greatest per capita
Al talent migration figure indicates that more talent is coming incoming migration of Al talent are Luxembourg (8.9), Cyprus

into the geographic area than departing. A negative figure (4.7), and United Arab Emirates (4.1).
indicates that more talent is departing than coming into

Net Al talent migration per 10,000 LinkedIn members by geographic area, 2024

Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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Figure 4.2.22
Figure 4.2.23 documents Al talent migration data over time. flowing into these countries. Countries with rising talent
In the last few years, Israel, the Netherlands, and Canada, flows include the United Arab Emirates, Saudi Arabia, and

among other countries, have seen declining net Al talent Luxembourg.
migration figures, suggesting that less Al talent has been

6 LinkedIn membership varies considerably among countries, which makes interpreting absolute movements of members from one country to another difficult. To compare migration
flows between countries fairly, migration flows are normalized for the country of interest. For example, if country A is the country of interest, all absolute net flows into and out of country
A (regardless of origin and destination countries) are normalized based on LinkedIn membership in country A at the end of each year and multiplied by 10,000. Hence, this metric indicates
relative talent migration of all other countries to and from country A.
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Net Al talent migration per 10,000 LinkedIn members by geographic area, 2019-24

Source: LinkedIn, 2024 | Chart: 2025 Al Index report
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7 Asterisks indicate that a country’s y-axis label is scaled differently than the y-axis label for the other countries.
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Measuring Al’s Current Economic Integration

Analysis of over 4 million real-world Al interactions
provides comprehensive empirical evidence of how Al
is being integrated across economic sectors. A recent
Anthropic _study examined usage patterns of their Al
model classifying users via the U.S. Department of Labor’s
O*NET occupational framework, offering concrete data
on which industries and job functions are leveraging
Al. More specifically, the Anthropic team analyzed user
conversations with their Claude.Al model to identify the
tasks and occupations most frequently using Al.

The analysis reveals that while all sectors make some
use of current Al, the dominant sectors are technical
and creative. As shown in Figure 4.2.24, computer and
mathematical occupations dominate, accounting for
37.2% of all Al interactions. Arts, design, entertainment,
sports, and media occupations follow at 10.3%, with
educational instruction and library occupations also
showing significant adoption.

Occupational representation in Claude usage data vs. US workforce distribution

Source: Handa et al., 2025 | Chart: 2025 Al Index report
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Highlight:
Measuring Al’'s Current Economic Integration (cont’d)

The Al usage patterns demonstrate a clear connection to (typically bachelor’s degree-level) show 50% higher usage
wage levels and required skills. Figure 4.2.25 illustrates than their baseline workforce representation, while both
that Al adoption peaks in occupations within the upper minimal-preparation and extensive-preparation roles
wage quartile but drops significantly at both wage show lower adoption rates.

extremes. Jobs requiring considerable preparation

Occupational usage of Claude by median annual wage
Source: Handa et al., 2025 | Chart: 2025 Al Index report
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Measuring Al’s Current Economic Integration (cont’d)

The Anthropic study finds that approximately 36% of
occupations use Al for at least a quarter of their associated
tasks (Figure 4.2.26), indicating substantial penetration
beyond technical fields. However, deep integration

Depth of Al usage across organizations
Source: Handa et al., 2025
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remains rare: Only about 4% of occupations show Al
usage across 75% or more of their tasks, suggesting that
wholesale automation of entire job categories is not yet

occurring.

Figure 4.2.26
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Measuring Al’'s Current Economic Integration (cont’d)

The analysis reveals how Al is being used within
organizations. As shown in Figure 4.2.27, 57% of Al
interactions demonstrate  augmentative  patterns
(enhancing human capabilities) while 43% show

automation patterns. This split suggests current Al

implementation tends toward complementing rather than
replacing human workers. The study finds that cognitive
skills like critical thinking and writing show high presence
in Al interactions, while physical and managerial skills
show minimal presence (Figure 4.2.28).

Percentage of Claude conversations by type of task execution
Source: Handa et al., 2025 | Chart: 2025 Al Index report
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Figure 4.2.27

Distribution of occupational skills exhibited by Claude in conversations
Source: Handa et al., 2025

Figure 4.2.28
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This section monitors Al investment trends,

leveraging data from Quid, which analyzes

investment data from more than 8 million

companies worldwide, both public and private.

Employing natural language processing, Quid 4 3 I t t
sifts through vast unstructured datasets— . nves Illen

including news aggregations, blogs, company

records, and patent databases—to detect Corporate Investment

patterns and insights. Additionally, Quid is . . . .

constantly expanding its database to include Figure 4.3.1 illustrates the trend in global corporate Al investment from
more companies, sometimes resulting in higher 2013 to 2024, including mergers and acquisitions, minority stakes, private

reported investment volumes for specific years.
For the first time, this year’s investment section

in the Al Index includes data on generative Al
eSS, In 2024, the total investment grew to $252.3 billion, an increase of 25.5%

investments, and public offerings.

from 2023. The most significant upturn occurred in private investment,
which rose by 44.5% compared with the previous year, while mergers and
acquisitions increased by 12.1%. Over the past decade, Al-related investments
have increased nearly thirteenfold.

Global corporate investment in Al by investment activity, 2013-24
Source: Quid, 2024 | Chart: 2025 Al Index report
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4.3 Investment

Global Trends
Global private Al investment increased 44.5% between 2023

Startup Activity

This section analyzes private investment trends in Al startups . . .
. . . and 2024, marking the first year-over-year growth since
that have received over $1.5 million in investment since 2013. . . . .
2021 (Figure 4.3.2). Despite recent fluctuations, private Al

investment globally has grown substantially in the last decade.

Global private investment in Al, 2013-24

Source: Quid, 2024 | Chart: 2025 Al Index report
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4.3 Investment

Funding for generative Al continued to increase sharply times the investment of 2022. Furthermore, generative
(Figure 4.3.3). In 2024, the sector attracted $33.9 billion, Al accounted for more than a fifth of all Al-related private
representing an 18.7% increase from 2023 and over 8.5 investment in 2024.

Global private investment in generative Al, 2019-24
Source: Quid, 2024 | Chart: 2025 Al Index report
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The number of newly funded Al companies in 2024 jumped of newly funded generative Al companies, with 214 new
to 2,049, an 8.4% increase over the previous year (Figure startups receiving funding, compared to 179 in 2023, and 31
4.3.4). In addition, 2024 registered an increase in the number in 2019 (Figure 4.3.5).

Number of newly funded Al companies in the world, 2013-24

Source: Quid, 2024 | Chart: 2025 Al Index report
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Number of newly funded generative Al companies in the world, 2019-24
Source: Quid, 2024 | Chart: 2025 Al Index report
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Figure 4.3.6 visualizes the average size of Al private
investment events, calculated by dividing the total yearly
Al private investment by the total number of Al private
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Figure 4.3.7 reports Al funding events disaggregated by
size. In 2024, Al private investment events increased across
funding size categories exceeding $100 million and decreased

investment events. From 2023 to 2024, the average increased or remained constant in smaller categories. In 2024, there

significantly, growing from $31.6 million to $45.4 million. were 15 Al private investment events that involved funding

sizes greater than $1 billion.

Average size of global Al private investment events, 2013-24
Source: Quid, 2024 | Chart: 2025 Al Index report
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Global Al private investment events by funding size,
2023 vs. 2024

Source: Quid, 2024 | Table: 2025 Al Index report
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Regional Comparison by Funding Amount

The United States once again led the world in terms of total 24.1 times the amount invested in the United Kingdom ($4.5
Al private investment. In 2024, the $109.1 billion invested billion) (Figure 4.3.8). Other notable countries that rounded out
in the United States was 11.7 times greater than the amount the top 15 in 2024 include Sweden ($4.3 billion), Austria ($1.5
invested in the next highest country, China ($9.3 billion), and billion), the Netherlands ($1.1 billion), and Italy ($0.9 billion).

Global private investment in Al by geographic area, 2024

Source: Quid, 2024 | Chart: 2025 Al Index report
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When aggregating private Al investments since 2013, the 4.3.9). Other countries that have attracted significant Al
country rankings remain the same: The United States leads investment over the past decade include Israel ($15.0 billion),
with $470.9 billion invested, followed by China with $119.3 Singapore ($7.3 billion), and Sweden ($7.3 billion).

billion, and the United Kingdom with $28.2 billion (Figure

Global private investment in Al by geographic area, 2013-24 (sum)

Source: Quid, 2024 | Chart: 2025 Al Index report
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Figure 4.310, which looks at Al private investment over China (-1.9%) and increased in Europe (+60%) since 2023, the
time by geographic area, suggests that the gap in private United States has seen a significant increase (+50.7%) during
investments between the United States and other regions is the same period—and a +78.3% increase since 2022.
widening. While Al private investments have decreased in

Global private investment in Al by geographic area, 2013-24

Source: Quid, 2024 | Chart: 2025 Al Index report

109.08, United States

100
@
o
©° 80
°
7
)
—
[S)
(2]
[
2 60
z
E
€
@
E a0
(%]
4
>
£
s
<)
F 20

¥ 9.29, China
o] —mm —
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Figure 4.3.10

O Table of Contents 9 Chapter 4 Preview




| I Artificial Intelligence
HI Index Report 2025

Chapter 4: Economy
4.3 Investment

The disparity in regional Al private investment becomes outpaced the combined investments of China and Europe in
particularly pronounced when examining generative Al- generative Al by approximately $21.8 billion (Figure 4.3.11). By
related investments. For instance, in 2023, the United States 2024, this gap widened to $25.4 billion.

Global private investment in generative Al by geographic area, 2019-24
Source: Quid, 2024 | Chart: 2025 Al Index report
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Regional Comparison by Newly Funded Al Companies
This section examines the number of newly funded Al regions with 1,073 new Al companies, followed by the United
companies across different geographic regions. Consistent Kingdom with 116, and China with 98 (Figure 4.3.12).

with trends in private investment, the United States leads all

Number of newly funded Al companies by geographic area, 2024
Source: Quid, 2024| Chart: 2025 Al Index report
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A similar trend is evident in the aggregate data since 2013. In the last decade, the number of newly funded Al companies in the

United States is around 4.3 times the amount in China, and 7.9 times the amount in the United Kingdom (Figure 4.3.13).

Number of newly funded Al companies by geographic area, 2013-24 (sum)

Source: Quid, 2024 | Chart: 2025 Al Index report
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Figure 4.3.14 presents data on newly funded Al companies with Europe, has seen significant increases in the number of
in specific geographic regions, highlighting a decade-long new Al companies, in contrast to China, which experienced a
pattern in which the United States consistently surpasses second consecutive annual decline.

both Europe and China. Since 2022, the United States, along

Number of newly funded Al companies by geographic area, 2013-24
Source: Quid, 2024 | Chart: 2025 Al Index report
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Focus Area Analysis

Quid also disaggregates private Al investment by focus area.
Figure 4.3.15 compares global private Al investment by focus
area in 2024 versus 2023. The focus areas that attracted the
most investment in 2024 were Al infrastructure/research/
governance ($37.3 billion); data management and processing

($16.6 billion); and medical and healthcare ($11 billion). The
prominence of Al infrastructure, research, and governance
reflects large investments in companies specifically building
Al applications, such as OpenAl, Anthropic, and xAl.

Global private investment in Al by focus area, 2023 vs. 2024
Source: Quid, 2024 | Chart: 2025 Al Index report
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Figure 4.3.15

Figure 4.3.16 presents trends over time in Al focus area investments. As noted earlier, most focus areas saw a boost in investments
in the last year. While still substantial, investment in NLP, customer support peaked in 2021 and has since then declined.
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Global private investment in Al by focus area, 2018-24

Source: Quid, 2024 | Chart: 2025 Al Index report
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This section examines the practical
application of Al by corporations,
highlighting industry usage trends,

how businesses are integrating Al, 4.4 CO rpo rate ACtiVity

the specific Al technologies deemed

most beneficial, and the impact of Al I nd UStry Usage

usage on financial performance.

This section incorporates insights from McKinsey’s publications on the state of
Al alongside data from prior editions. The 2024 McKinsey analysis is based on two
surveys spanning 2,854 respondents across various regions, industries, company sizes,

functional areas, and tenures.

Use of Al Capabilities

Business use of Al increased significantly after stagnating between 2017 and 2023. The
latest McKinsey report reveals that 78% of surveyed respondents say their organizations
have begun to use Al in at least one business function, marking a significant increase
from 55% in 2023 (Figure 4.4.1). Use of generative Al, which was covered for the first
time in last year’s survey, more than doubled year over year, with 71% of respondents
in 2024 saying their organizations regularly use the technology in at least one business
function, compared to 33% in 2023.

Share of respondents who say their organization uses Al in at least one function, 2017-24
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Figure 4.4.2 shows Al usage by industry and Al function in 2024. The greatest usage was in IT for tech (48%), followed by product

and/or service development for tech (47%) and marketing and sales for tech (47%).

Al use by industry and function, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Figure 4.4.2°

8 “Advanced industries” comprises respondents from sectors such as advanced electronics, aerospace and defense, automotive and assembly, and semiconductors. “Energy and materials”
encompasses respondents from agriculture, chemicals, electric power and natural gas, metals and mining, oil and gas, as well as paper, forest products, and packaging.
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Organizations have reported both cost reductions and supply chain and inventory management (43%), and software
revenue increases where they have started using Al, but engineering (41%). For revenue gains, the functions that most
most commonly at low levels (Figure 4.4.3). The areas where commonly benefited from their use of Al include marketing
respondents most frequently reported that their use of Al and sales (71%), supply chain and inventory management
has resulted in cost savings were service operations (49%), (63%), and service operations (57%).

Cost decrease and revenue increase from analytical Al use by function, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report

Decrease by <10% [ Decrease by 10-19% Decrease by 220% M Increase by >10% Increase by 6-10% M Increase by <5%
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Service operations 49% 35% 57%
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Figure 4.4.3
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Figure 4.4.4 presents global Al usage by organizations, organizations’ reported use grew by 27 percentage points.
segmented by regions. In 2024, surveyed respondents North America remains the leader in use of Al (82%), but
in every region reported increased use of Al compared only by a small margin. Europe also experienced a significant
with 2023. One of the most significant year-over-year increase in Al usage rates, growing by 23 percentage points

growth rates in Al

use was seen in Greater China, where to 80% since 2023.

Al use by organizations in the world, 2023 vs. 2024

Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Deployment of Al Capabilities

How are organizations deploying Al? Figure 4.4.5 highlights
the proportion of total surveyed respondents that report
using generative Al for a particular function. It is possible
for respondents to indicate that they deploy Al for multiple
purposes.

Most common generative Al use cases by function, 2024

Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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The most common application is marketing strategy content
support (27%), followed by knowledge management (19%),
personalization (19%), and design development (14%). Most of
the leading reported use cases are within the marketing and
sales function. A complementary survey of C-suite executives
in developed markets found that only 1% described their
generative Al rollouts as “mature.” Overall, most companies
are still in the early stages of capturing value at scale from Al.
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Figure 4.4.6 examines the proportion of respondents
that report cost decreases and revenue increases from
their organizations’ use of generative Al in each business
function. Overall, respondents report both cost reductions
and revenue increases across various functions as a result
of using generative Al, most commonly at low levels. The
areas where respondents most frequently reported cost
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savings were supply chain and inventory management
(61%), service operations (58%), and both human resources
and strategy and corporate finance (56%). For revenue
gains, the functions most commonly reporting benefits
from generative Al include strategy and corporate finance
(70%), supply chain and inventory management (67%), and
marketing and sales (66%).

Cost decrease and revenue increase from generative Al use by function, 2024

Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Figure 4.4.7 depicts the variation in generative Al usage (78%), which is shown in Figure 4.4.1. The use gap between
among businesses across different regions of the world. Al overall and generative Al has contracted sharply from 22
Across all regions, reported use of generative Al in at least one percentage points in 2023 to 7 percentage points in 2024,
business function reached 71% in 2024, more than doubling signaling an accelerated usage of generative Al capabilities.
from 33% in 2023. This amount is just 7 percentage points North America (74%), Europe (73%), and Greater China (73%)
lower than the percentage who reported using any form of Al lead in organizations’ use of generative Al.

Generative Al use by organizations in the world, 2023 vs. 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Figure 4.4.7°

9 This figure highlights Al use in at least one business function.
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Al’s Labor Impact

Over the last six years, the growing integration of Al into
the economy has sparked intense interest in its productivity
potential. While early adoption showed promise, quantifying
Al’s impact remained challenging until 2023, when the first
wave of rigorous studies emerged. In 2024, a substantial
body of empirical research established clear patterns of Al’s
workplace effects across multiple domains and contexts. This
section analyzes productivity impact data from five major
academic studies, which together represent the first large-
scale empirical investigation of Al’s workplace effects. The
research, encompassing over 200,000 professionals across
multiple industries and contexts, reveals consistent productivity
gains ranging from 10% to 45%, with particularly strong effects
in technical, customer support, and creative tasks. These
studies employed diverse methodologies, including natural
experiments, randomized controlled trials, and large-scale
surveys, to measure Al’s impact across different organizational
contexts.

Productivity Trends

One of the most reputable studies on Al's impact on
productivity, particularly generative Al, was published by
Erik Brynjolfsson, Danielle Li, and Daniel Rock in April 2023."°
Analyzing data from 5,179 customer support agents, the study
examined the staggered introduction of a generative Al-
powered conversational assistant. The researchers found that
Al adoption increased the number of issues resolved per hour
by 14.2% (Figure 4.4.8). Moreover, the study uncovered that
productivity gains emerged quickly after Al was introduced,
and Al-exposed workers maintained higher efficiency even
during Al outages.

Other
Brynjolfsson finding. A Microsoft workplace study established

recently released research has confirmed the
baseline productivity improvements in common workplace
tasks, with document editing increasing by 10-13% and email
processing time decreasing by 11%. Specialized roles showed
higher gains. For example, security professionals achieved 23%
faster completion times with 7% higher accuracy, and sales
teams demonstrated 39% faster response times with 25%

higher accuracy.
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Impact of Al on customer support agents
Source: Brynjolfsson et al., 2023 | Chart: 2024 Al Index report
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Figure 4.4.8

Figure 4.4.9 This figure has been removed following a post-publication correction

(October 2025). It referenced a paper that has been retracted.

10 The paper was published as NBER working paper 31161in 2023 and then in the “Quarterly Journal of Economics” in 2025.
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In the software development domain, two major studies
provided complementary evidence of Al’s impact. A field
experiment with 4,867 developers found that Al assistance
increased task completion by 26.08% on average. This finding
was reinforced by another natural experiment with 187,489
developers; it documented a 12.4% increase in core coding
activities alongside a 24.9% decrease in time spent on project
management tasks.

Equalizing Effect

A consistent pattern across studies is Al’s equalizing effect
on workplace performance (Figure 4.4.10). In software
development contexts, new research has found that junior

Al’s productivity equalizing effects

Low-skill worker productivity gain
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developers experienced productivity increases of 21-40%,
while senior developers saw more modest gains of 7-16%.

This pattern was independently confirmed by other studies,
which found coding productivity increases of 14—-27% for low-
ability workers compared to 5-10% for high-ability workers.
Moreover, their analysis showed Al increased exploration
of new technologies by 21.8% and generated an average
potential salary increase of $1,683 per developer annually,
suggesting Al tools are not just boosting productivity but
actively enabling skill development. This research supports
earlier 2023 and 2024 studies showing that Al-driven
productivity gains vary based on workers’ initial skill levels.

High-skill worker productivity gain

Brynjolfsson et al., 2023 | Customer support 34% Indistinguishable from zero
Dell’Acqua et al., 2023 Consulting 42.96% 16.5%

Cui et al., 2024 Software engineering | 21-40% 7-16%

Hoffman et al., 2024 Software engineering | 12-27% 5-10%

Figure 4.4.10
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Adoption and Integration
The research reveals that productivity gains are strongly
correlated with comprehensive Al integration and systematic

survey
researchers of 233 employees found that organizations with

implementation. A conducted by Romanian
high Al integration showed a 72% probability of significant
productivity improvements, compared to just 3.4% for those
with minimal integration. Their analysis documented a clear
spectrum of productivity improvements across the entire
study sample, with 46.8% of respondents reporting gains of
0-20%, 26.2% seeing gains of 20—-40%, and 18.4% achieving
improvements of 40-60%. A smaller proportion saw even
larger gains, with 7.7% reporting increases of 60-80% and
0.9% achieving improvements of 80-100% (Figure 4.4.11).

Workforce Impact

The introduction of Al tools has led to significant shifts in both
task allocation and team structures. The Microsoft workplace
study found that Al automation enabled a 45% reduction in
perceived mental demand (measured as 30/100 vs. 55/100
on their cognitive load scale), closed 84.6% of the accuracy
gap for nonnative English speakers, and led to 49% more key
information being included in professional reports. These
improvements were particularly pronounced among “power
users” (users who are intimately familiar with Al, as defined
by using it at least several times a week) with 29% of Al
users in this category saving more than 30 minutes per day.
Research from the Harvard Business School documented
that Al adoption led to reduced collaborative overhead, with
projects requiring 79.3% fewer collaborators (team members)
on average.
These changes are reshaping professional roles in
fundamental ways. Debates about Al, like those surrounding
pasttechnological advancements, often center on automation
versus augmentation—whether Al will replace jobs or
enhance human work. While concrete data on Al-driven
workforce changes remains limited, research is shedding

light on how people perceive its impact on employment.
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Distribution of productivity gains from Al use
Source: Necula et al., 2024 | Chart: 2025 Al Index report
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Figure 4.4.11

The Romanian survey data suggests varied expectations for
Al’'s impact on workforce size, with 43% of organizations
anticipating decreases, 30% expecting little change, 15%
projecting increases, and 12% remaining uncertain about
long-term implications. A McKinsey survey of executives
found that 31% expect Al to reduce workforce size, while
only 19% foresee an increase (Figure 4.4.12). In spite of claims
about the increase in productivity of software engineers
due to generative Al, the survey shows that their number is
expected to increase, consistent with the Jevons Paradox.
Notably, the share predicting workforce reductions has
declined from last year, suggesting business leaders are
becoming less convinced that Al will shrink organizational
workforces (Figure 4.4.13).

Artificial Intelligence
Index Report 2025
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4.4 Corporate Activity

Expectations about the impact of generative Al on organizations’ workforces in the next 3 years, 2024
Source: McKinsey & Company Survey, 2024 | Chart: 2025 Al Index report
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Figure 4.4.12
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Expectations about the impact of Al on organizations’ workforces in the next 3 years, 2023 vs. 2024
Source: McKinsey & Company Survey, 2023-24 | Chart: 2025 Al Index report
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4.5 Robot Deployments

The deployment of robots equipped
with Al-based software technologies
offers a window into the real-world
application of Al-ready infrastructure.
This section draws on data from the

International Federation of Robotics 4 . 5 RO bOt D e p | Oy m e ntS

(IFR), a nonprofit organization

dedicated to advancing the robotics Aggregate Trends
industry. Annually, the IFR publishes
the World Robotics Reports, which The following section includes data on the installation and operation of industrial

. . )
s elelsrl el s Fll e Hemel: robots, which are defined as an “automatically controlled, reprogrammable,

multipurpose manipulator, programmable in three or more axes, which can be either
fixed in place or mobile for use in industrial automation applications.”

Figure 4.5.1 reports the total number of industrial robots installed worldwide by year.
In 2023, industrial robot installations decreased slightly, with 541,000 units marking a
2.2% decrease from 2022. This reflects the first year-over-year decrease since 2019.

Number of industrial robots installed in the world, 2012-23

Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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Figure 4.5.1

11 Due to the timing of the IFR report, the most recent data is from 2023. Every year, the IFR revisits data collected for previous years and will occasionally update the data if more accurate
figures become available. Therefore, some of the data reported in this year’s report might differ slightly from data reported in previous years.
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4.5 Robot Deployments

The global operational stock of industrial robots reached 4,282,000 in 2023, up from 3,904,000 in 2022 (Figure 4.5.2). Since
2012, both the installation and utilization of industrial robots have steadily increased.

Operational stock of industrial robots in the world, 2012-23
Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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Figure 4.5.2
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4.5 Robot Deployments

Industrial Robots: Traditional vs. Collaborative Robots

There is a distinction between traditional robots, which operate Figure 4.5.3 reports the number of industrial robots installed
in place of humans, and collaborative robots, designed to work in the world by type. In 2017, collaborative robots accounted
alongside them.? The robotics community is increasingly for just 2.8% of all new industrial robot installations. By 2023,
enthusiastic about collaborative robots due to their safety, the number rose to 10.5%.

flexibility, scalability, and ability to learn iteratively.

Number of industrial robots installed in the world by type, 2017-23

Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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Figure 4.5.3

12 More detail on how the IFR defines collaborative robots can be found here.
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4.5 Robot Deployments

By Geographic Area
Country-level data on robot installations can suggest 46,100 and 7.3 times more than the United States’ 37,600

which nations prioritize the integration of robots into their (Figure 4.5.4). South Korea and Germany followed with
economies. In 2023, China led the world with 276,300 31,400 and 28,400 installations, respectively.

industrial robot installations, six times more than Japan’s

Number of industrial robots installed by geographic area, 2023
Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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4.5 Robot Deployments

Since surpassing Japan in 2013 as the leading installer of industrial robots, China has significantly widened the gap with the
nearest country. In 2013, China’s installations accounted for 20.8% of the global total, reaching 51.1% by 2023 (Figure 4.5.5).

Number of new industrial robots installed in top 5 countries, 2011-23
Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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Figure 4.5.5
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4.5 Robot Deployments

Since 2021, China has installed more industrial robots than the rest of the world combined, but the margin decreased in 2023
compared to 2022 (Figure 4.5.6). Despite this year-over-year decline, the sustained trend underscores China’s dominance in
industrial robot installations.

Number of industrial robots installed (China vs. rest of the world), 2016-23

Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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Figure 4.5.6
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4.5 Robot Deployments

According to the IFR report, seven countries reported an include India (59%), the United Kingdom (51%), and Canada
annual increase in industrial robot installations from 2022 to (37%). The geographic areas with the steepest declines include
2023 (Figure 4.5.7). The countries with the highest growth rates Taiwan (-43%), France (-13%), and Japan and ltaly (both -9%).

Annual growth rate of industrial robots installed by geographic area, 2022 vs. 2023

Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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Country-Level Data on Service Robotics

Another important class of robots is service robots, which
the International Organization for Standardization defines as
a robot “that performs useful tasks for humans or equipment
excluding industrial automation applications.”™ Such robots
can, for example, be used in medical settings and for

| I Artificial Intelligence
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professional cleaning. In 2023, more service robots were
installed for every application category than in 2022, with the
exception of medical robots (Figure 4.5.8). More specifically,
the number of service robots installed in agricultural and
hospitality settings increased 2.5 and 2.2 times, respectively.

Number of service robots installed in the world by application area, 2022 vs. 2023

Source: International Federation of Robotics (IFR), 2024 | Chart: 2025 Al Index report
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13 A more detailed definition can be accessed here.
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CHAPTER 5:
Science and Medicine

Overview

This chapter explores key trends in Al-driven science and medicine, reflecting the
technology’s growing impact in these fields. It begins with notable Al milestones from
2024, followed by an analysis of Al in protein folding, an important area of scientific
advancement. The chapter then examines Al’s role in clinical care, spanning both
imaging and non-imaging applications. This includes a review of clinical knowledge
capabilities in new language models, diagnostic and clinical management capabilities
of Al systems, real-world Al deployments in medicine, synthetic data applications, and
social determinants of health. Finally, the chapter concludes with an exploration of
ethical trends in Al medical research.

This chapter was prepared by RAISE Health (Responsible Al for Safe and Equitable
Health), a collaboration between Stanford Medicine and the Stanford Institute for
Human-Centered Atrtificial Intelligence (HAI). Since its launch in 2023, RAISE Health
has worked to advance responsible Al innovation in biomedical research, education,
and patient care, with a focus on ensuring that these technologies benefit everyone.

Fostering collaborative research and knowledge sharing are central to RAISE Health’s
mission. As part of that commitment, RAISE Health partnered with the Al Index Steering
Committee to expand the group’s focus to include key developments in science and
medicine. In 2024, this collaboration produced the inaugural chapter on science and
medicine, highlighting major Al advancements at Stanford and beyond. The 2025
chapter builds on that foundation with contributions from members of the RAISE
Health faculty research council, Stanford School of Medicine faculty, postdoctoral

fellows, and undergraduate students from the schools of Medicine and Engineering.
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Chapter Highlights

1. Bigger and better protein sequencing models emerge. In 2024, several large-scale, high-performance protein
sequencing models, including ESM3 and AlphaFold 3, were launched. Over time, these models have grown significantly in size,
leading to continuous improvements in protein prediction accuracy.

2. Al continues to drive rapid advances in scientific discovery. Al’s role in scientific progress continues to expand.
While 2022 and 2023 marked the early stages of Al-driven breakthroughs, 2024 brought even greater advancements, including
Aviary, which trains LLM agents for biological tasks, and FireSat, which significantly enhances wildfire prediction.

3. The clinical knowledge of leading LLMs continues to improve. OpenAl’s recently released o1 set a new state-
of-the-art 96.0% on the MedQA benchmark—a 5.8 percentage point gain over the best score posted in 2023. Since late
2022, performance has improved 28.4 percentage points. MedQA, a key benchmark for assessing clinical knowledge, may be
approaching saturation, signaling the need for more challenging evaluations.

4. Al outperforms doctors on key clinical tasks. A new study found that GPT-4 alone outperformed doctors—both
with and without Al—in diagnosing complex clinical cases. Other recent studies show Al surpassing doctors in cancer detection
and identifying high-mortality-risk patients. However, some early research suggests that Al-doctor collaboration yields the best
results, making it a fruitful area of further research.

5. The number of FDA-approved, Al-enabled medical devices skyrockets. The FDA authorized its first Al-enabled
medical device in 1995. By 2015, only six such devices had been approved, but the number spiked to 223 by 2023.

6. Synthetic data shows significant promise in medicine. Studies released in 2024 suggest that Al-generated
synthetic data can help models better identify social determinants of health, enhance privacy-preserving clinical risk prediction,
and facilitate the discovery of new drug compounds.
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Chapter Highlights (cont’d)

7. Medical Al ethics publications are increasing year over year. The number of publications on ethics in medical Al
quadrupled from 2020 to 2024, rising from 288 in 2020 to 1,031in 2024.

8. Foundation models come to medicine. In 2024, a wave of large-scale medical foundation models were released,
ranging from general-purpose multimodal models like Med-Gemini to specialized models such as EchoCLIP for echocardiology
and ChexAgent for radiology.

9. Publicly available protein databases grow in size. Since 2021, the number of entries in major public protein science
databases has grown significantly, including UniProt (31%), PDB (23%), and AlphaFold (585%). This expansion has important
implications for scientific discovery.

10. Al research wins two Nobel Prizes. In 2024, Al-driven research received top honors, with two Nobel Prizes awarded
for Al-related breakthroughs. Google DeepMind’s Demis Hassabis and John Jumper won the Nobel Prize in Chemistry for their
pioneering work on protein folding with AlphaFold. Meanwhile, John Hopfield and Geoffrey Hinton received the Nobel Prize in
Physics for their foundational contributions to neural networks.
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5.1 Notable Medical and Biological Al Milestones

This section highlights significant Al-related medical
and biological breakthroughs in 2024 as chosen by the
RAISE Health Al Index Workgroup and Al Index Steering
Committee.
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5.1 Notable Medical and Biological Al Milestones

Protein Sequence Optimization

LLMs optimize protein sequence optimization

LLMs have recently, albeit unintentionally, gained a new
biological capability: optimizing protein sequences.
Traditionally, protein engineering requires extensive lab
studies to refine sequences for improved functionality.
However, a recent study found that LLMs—without fine-
tuning—are becoming remarkably effective at this task.
In other words, this is a hidden strength of existing LLMs,
exemplified in this case by an adapted version of Llama-
3.1-8B-Instruct. Using a directed evolutionary approach,
researchers demonstrated that LLMs can generate protein
sequences that outperform conventional algorithms across
both synthetic and experimental fitness landscapes.

Figure 5.1.1 illustrates the researchers’ findings. The objective
in this case is to maximize the fitness value, with higher
scores indicating better performance. The researchers
compared their proposed method’s fitness score against that
of the default evolutionary algorithm (EA) approach.' The
study revealed that this optimization extends beyond single-
objective tasks to include constrained, budget-limited, and
multiobjective scenarios. This compelling finding highlights
the emergent properties of state-of-the-art LLMs, suggesting
that as these general-purpose models continue to improve,
their impact on scientific fields will only grow.

Single-objective optimization results for

fitness optimization
Source: Wang et al., 2024

Figure 5.1.1

1 Evolutionary algorithms (EA) simulate key aspects of biological evolution within a computer program to tackle complex problems—especially those without precise or fully satisfactory

solutions—by finding approximate answers.
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Aviary

Training LLM agents for biological tasks

As Al systems become increasingly useful, particularly for
scientific use cases, one challenge has been designing
language models that can interact with tools as they reason
through complex tasks. Aviary introduces a structured
framework for training language agents for three particularly
challenging scientific tasks: DNA manipulation (for molecular
cloning), answering research questions (through accessing
scientific papers), and engineering protein stability. Figure
5.1.2 compares the performance of different models across
various Aviary environments. It contrasts a baseline Claude 3.5
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Sonnet model, which attempts tasks without environmental
access, with models integrated into agent frameworks within
the Aviary environment. Across nearly all tasks, the agentic
models outperform the baseline. This research demonstrates
that (1) although general-purpose LLMs perform well at many
scientific tasks, fine-tuning models alongside domain experts
often helps models yield superior results, and (2) Al-driven
scientific research can be accelerated not only by model size
but also through interaction with external tools, capabilities
now commonly referred to as “agentic Al.”

Performance of LLMs and language agents to solve tasks using Aviary environments

Source: Narayanan et al., 2024 | Chart: 2025 Al Index report

M Claude 3.5 Sonnet Claude 3.5 Sonnet agent M Claude 3.5 Sonnet agent pass @16
GPT-40 El agent B Llama 3.1 8B El agent Llama 3.1 8B El agent majority vote @32
1.00
0.89
0.81
0.80
0.72 0.72
0.60 0.59
2
2 0.49
&
©
o
0.40
0.20 o 015
0.00 I I
GSMS8K hotpotQA SeqQA LitQA2 Protein stability
Task

O Table of Contents

9 Chapter 5 Preview

Figure 5.1.2



https://arxiv.org/abs/2412.21154

Chapter 5: Science and Medicine
5.1 Notable Medical and Biological Al Milestones

AlphaProteo

Al for novel, high-affinity protein binders

AlphaProteo is Google DeepMind’s model focused on
creating novel, high-affinity protein binders that attach to
specific target molecules. Figure 5.1.3 illustrates the predicted
structures of seven target proteins for which AlphaProteo
created successful binders. AlphaProteo has designed the
first protein binders for many targets, including VEGF-A,
a protein linked to cancer and diabetes. Many of the tool’s
binding strengths are significantly better than current state-
of-the-art solutions; in fact, the team estimates that some
of their binders are up to 300 times more effective than
anything currently available on the seven target proteins they
tested. For the viral protein BHRF1, 88% of their designed
binders successfully bound when tested in DeepMind’s wet
lab. Based on the tested targets, AlphaProteo binders hold
together roughly 10 times more strongly than those created
using existing state-of-the-art design methods, making it a
true bioengineering breakthrough. The model is being used
for drug development, diagnostics, and biotech applications.

Human Brain Mapping
Synaptically reconstructing a small piece of the human brain

A team at Google’s Connectomics project has reconstructed

a one-cubic-millimeter section of the human brain at the
synaptic level—hailed by Wired as “the most detailed map
of brain connections ever made.” The sample, taken from an
epileptic patient’s left anterior temporal lobe during surgery,
was imaged with a multibeam scanning electron microscope.
Over 5,000 ultra-thin slices (30 nanometers each) captured
around 57,000 cells—including neurons, glial cells, and
blood vessels—along with 150 million synapses. Figure 5.1.4

3D brain map images
Source: Google Research, 2024

Figure 5.1.4
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AlphaProteo generating successful binders
Source: Google DeepMind, 2024
Figure 5.1.3

visualizes the results: excitatory neurons on the left, inhibitory
neurons on the right. To process this massive dataset, the team
developed machine learning tools like flood-filling networks
(for neuron reconstruction without manual tracing), SegCLR
(for cell type identification), and TensorStore (for managing
the multidimensional dataset). The dataset is publicly available
via Neuroglancer, a web-based exploration tool; and CAVE,
a Neuroglancer extension for annotation refinement. This
project marks a major step in understanding neural circuitry
and could inform future neurological treatments.
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Virtual Al Lab

Virtual Al lab supercharges biomedical research

Al’s role in science is shifting from a passive tool to an active
collaborator. A recent Stanford study introduced a virtual Al
laboratory, where multiple Al-powered scientists (technically
LLMs) specialize in different disciplines and autonomously
collaborate as agents. In one experiment, human researchers
tasked this Al-driven lab with designing nanobodies—
antibody fragments—capable of binding to SARS-CoV-2,
the virus that causes COVID-19. The lab generated 92
nanobodies, with over 90% successfully binding to the virus

Workflow in Al-based lab

Source: FreeThink, 2025

Figure 5.1.5
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in validation studies. The virtual lab was structured similarto a
computational biology lab, comprising a principal investigator
(P), a scientific critic Al, and three discipline-specific
scientists specializing in immunology, computational biology,
and machine learning (Figure 5.1.5). The Pl model created
these expert scientists and guided their research. Tools like
AlphaFold and Rosetta were used for protein design, but the
real significance of this study lies not in its specific findings,
but in demonstrating that an entirely autonomous, LLM-
powered lab can generate meaningful scientific discoveries.



https://www.nature.com/articles/d41586-024-01684-3
https://www.freethink.com/artificial-intelligence/virtual-lab-interdisciplinary-research
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GluFormer

Continuous glucose monitoring with Al

GluFormer, a foundation model developed by Nvidia Tel Aviv,
the Weizmann Institute, and others, analyzes continuous
glucose monitoring (CGM) data to predict long-term health
outcomes. Trained on over 10 million glucose measurements
from nearly 11,000 individuals—most without diabetes—it
forecasts health trajectories up to four years in advance.
For instance, GluFormer can identify individuals at risk of
developing diabetes or worsening glycemic control long
before symptoms appear. In a 12-year study of 580 adults, it
accurately flagged 66% of new-onset diabetes cases and 69%
of cardiovascular-related deaths within their respective top-
risk quartiles. The model’s results have also generalized across
19 external cohorts (n=6,044) in five countries and diverse
health conditions. GluFormer often outperforms standard
CGM-based metrics like the glucose management indicator
(GMI) (Figure 5.1.6). In the near and long term, models like
GluFormer will shift diabetes care from reactive treatment to
proactive prevention, enabling earlier clinical intervention.

Evolutionary Scale Modeling v3 (ESM3)
Simulating evolutionary processes to generate novel proteins

EvolutionaryScale’s ESM3 is
designed to generate novel proteins by simulating evolutionary

a groundbreaking model

processes. The model was trained on 2.78 billion protein
sequences, and hosts 98 billion parameters. Like many
other Al models, it is available in three sizes (small, medium,
and large) and is available both via APl and their partners’
platforms. Perhaps ESM3’s most notable achievement is
designing esmGFP, a new artificial green fluorescent protein
which the company estimates would take nature 500 million
years to develop. This was done through human-led chain-of-
thought prompting. Figure 5.1.7 illustrates the performance
of various ESM3 models in generating proteins that satisfy
atomic coordination prompts. The results show that larger
ESM3 models solve twice as many tasks. ESM3 is also open-
sourced, promoting collaboration in synthetic biology and
protein engineering projects which hope to use code and
data from the project—with applications in drug discovery,
materials science, and environmental engineering.
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GluFormer versus glucose management indicator
Source: Lutsker et al., 2024

Figure 5.1.6

ESM3 models evaluated on protein generation from
atomic coordination prompts
Source: ESM3, 2024 | Chart: 2025 Al Index report
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AlphaFold 3

Predicting the structure and interactions of all of life’s
molecules

Google and Isomorphic Lab’s latest in the AlphaFold series,
AlphaFold 3, goes beyond predicting protein structures
to more accurately modeling their interactions with key
biomolecules (DNA, RNA, ligands, antibodies). Figure 5.1.8
compares AlphaFold 3’s accuracy in predicting protein-
ligand interactions against other top docking tools (e.g.,
Vina and Gnina) based on the percentage of predictions
with a root mean square deviation (RMSD) below 2 A, an

AlphaFold 3 vs. baselines for protein-ligand docking

Source: ESM3, 2024 | Chart: 2025 Al Index report
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important measure of docking accuracy.?® AlphaFold 3 is
competitive with previous state-of-the-art methods and
particularly effective when the binding pocket is predefined,
meaning that the docking algorithm is given prior knowledge
about the specific region on the protein where the small
molecule (ligand) is expected to bind. AlphaFold 3 can
accelerate drug development by modeling small molecule-
protein interactions, which is important for disease research.
Moreover, AlphaFold 3’s open-source access empowers
scientists globally.

84.40

7310

Gnina + Conf. Ensemble AF3 AF3 Pocket Specified

Method

Figure 5.1.8

2 A docking tool, like Vina, is a computational program used in molecular docking—a process that predicts how small molecules (such as drugs) interact with target proteins. These tools help
scientists model and visualize how a molecule might bind to a protein’s active site, which is crucial in drug discovery.

3 The chart uses two shades of bars to represent different accuracy criteria in molecular docking predictions. The lighter bars indicate the percentage of docking results with a root mean
square deviation (RMSD) below 2 A, meaning the predicted pose is structurally accurate. The darker bars apply a stricter criterion, showing the proportion of predictions that are not only
within 2 A RMSD but also correctly positioned within the binding pocket (PB-valid). This distinction highlights the difference between general docking accuracy and more precise, biologically

relevant binding predictions.
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Al has transformed numerous scientific
fields, with protein science being one of
the most impacted areas. Understanding
protein sequences is fundamental to
biology, influencing drug discovery,
synthetic biology, and disease research.
Recent Al advancements have enabled
scientists to analyze and predict protein
functions, structures, and interactions
with unprecedented accuracy. As the
field evolves, these developments will
affect healthcare, biotechnology, and
regulatory frameworks. This section
highlights key advancements in Al-
driven protein analysis over the past
year, focusing on public databases,
research trends, and emerging policy
considerations.

Emergent structure prediction
success, CASP15

Source: EvolutionaryScale, 2024
Figure 5.2.1
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5.2 The Central Dogma
Protein Sequence Analysis

Al-Driven Protein Sequence Models

The past year has witnessed remarkable progress in Al models applied to protein
sequences. Large-scale machine learning models have improved our ability to
predict protein properties, accelerating research in structural biology and molecular
engineering. As noted above, several notable protein sequencing models, like
AlphaFold, ESM2, and ESM3, have recently been released.

ESM3 integrates multimodal inputs—sequence, structure, and interaction data—
while its larger parameter size improves representativeness and predictive accuracy.
As the ESM family has expanded in scale, protein prediction performance has
improved. Newer models, such as ESM C, released in 2024, have achieved greater
accuracy in predicting protein structures in the Critical Assessment of Structure
Prediction (CASP15) challenge (Figure 5.2.1).



https://www.evolutionaryscale.ai/blog/esm3-release
https://www.evolutionaryscale.ai/blog/esm-cambrian
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Other significant advancements include ProGen, a generative
Al model that, in demonstrating the ability to design
functional protein sequences, has highlighted the potential of
Al-assisted protein engineering. Similarly, transformer-based

models such as ProtT5 leverage deep learning to predict
protein function and interactions directly from sequence
data, advancing the field of computational biology. Figure

Size of protein sequencing models, 2020-24
Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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5.2.2 showcases key protein sequencing models and their
parameter sizes, arranged by release date. As noted earlier,
there is a clear trend toward increasingly larger models trained
on ever-expanding datasets. These Al-driven approaches
have transformed protein science by minimizing reliance on
costly, time-intensive experimental methods, enabling rapid
exploration of protein function and design.
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Public Databases for Protein Science

The expansion of public databases has been crucial for Al sequences, enhancing their predictive power. Figure
applications in protein science. Well-curated, large-scale 5.2.3 provides information on several key protein science
datasets enable Al models to train on diverse biological databases and their release date.

Key protein science databases
Source: Al Index, 2025

Dataset Release date Description
Protein Data Bank (PDB) 1971 A database of experimentally solved protein structures. When first released,

it was the first open-access digital resource in the biological sciences.

Pfam 1995 A comprehensive database of protein families, providing annotations and
multiple sequence alignments generated through hidden Markov models.

STRING 2000 Dataset offering valuable information on protein interactions and
evolutionary relationships.

UniProt 2002 Still the gold standard for protein sequence and function annotation, with
Al-assisted curation improving accuracy.

PDBbind 2004 A subset of the PDB that contains protein biomolecular complexes, including
protein-ligand, protein-protein, and protein-nucleic acid complexes.

AlphaFold Database 2021 An essential resource for structural biology, now integrating Al-driven
models to predict missing experimental data.

Figure 5.2.3

The number of entries in various public protein science Growth of public protein science databases, 2019-25

. . . Source: RAISE Health, 2025 | Chart: 2025 Al Index report
databases has also steadily grown over time (Figure 5.2.4). I i

The increasing availability of Al-generated protein insights |— UniProt AlphaFold DB == PDB|

has made these databases indispensable tools forresearchers

and industry professionals. However, maintaining data /_/

quality and preventing biases in Al models remain ongoing 100M

challenges.
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Figure 5.2.4
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Research and Publication Trends

Al-Driven Protein Science Publications

Al applications in protein science have gained significant
traction in academic research, as evidenced by an increase in
Al-driven studies on PubMed and bioRxiv preprints over the
past year. These studies focus on several key areas. Protein
structure prediction has become more accessible due to
advances in machine learning, providing deeper structural
insights. Al models now infer biochemical functions from raw
sequence data with greater accuracy, enhancing function
prediction. In addition, Al models are being developed
that can predict protein-drug interactions and even create

| I Artificial Intelligence
HI Index Report 2025

new drugs from scratch that can target specific proteins.
Both of these tasks are crucial for drug discovery and drug
development. Furthermore, Al-generated proteins with novel
functions are emerging, particularly in enzyme engineering
and therapeutic applications, marking a significant step
forward in synthetic protein design. Figure 5.2.5 illustrates
the proportion of protein Al-driven research within biological
sciences in 2024. The most researched topic was function
prediction (8.4%), followed by protein structure prediction
(7.6%) and protein-drug interactions (3.0%)

Proportion of Al-driven protein research in the biological sciences, 2024

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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Image and Multimodal Al for Scientific Discovery

Advances in cryo-electron microscopy, high-throughput
fluorescence microscopy, and whole-slide imaging allow
scientists to examine and analyze atomic, subcellular
context and tissue-level structures with high precision to
reveal new insights into complex biological processes.
To achieve this, researchers interpret and contextualize
image findings with existing scientific knowledge to link
observations to biological functions and disease relevance.
Given the rise of high-throughput microscopy, active
research has increasingly focused on the intersection of
vision, vision-language, and, more recently, vision-omics
foundation models. The number of microscopy foundation
models has increased over time across various techniques
(Figure 5.2.6). Light-based models doubled from four
to eight in 2024, and, while no electron or fluorescence
models were released in 2023, four models for each
technique emerged in 2024. Overall, foundation models
for microscopy are increasing as more data is collected
and made publicly available.

© Table of Contents 9 Chapter 5 Preview

Number of foundation models per microscopy
techniques, 2023-24

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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5.3 Clinical Care, Imaging

Data: Sources, Types, and Needs

Al in medical imaging is rapidly evolving, expanding into
new data modalities, and addressing increasingly complex
clinical questions. More than 80% of FDA-cleared machine
learning software targets the analysis of medical images.
Currently, Al is predominantly applied to two-dimensional
(2D) data settings, where conventional image-processing
architectures, such as convolutional neural networks (CNNs)
andtransformers, can be effectively utilized. However, despite
a number of successes in this field, many Al applications in
medical imaging rely on highly limited training datasets.

In histopathology, for example, while staining patient biopsies
for histological analysis is routine, only a small fraction of
these samples is digitized and made publicly available. Even
fewer datasets contain the necessary matched annotations or
omics data required for advanced classification tasks. Publicly

available histopathology cohorts rarely exceed 10,000 patient
samples, with The Cancer Genome Atlas (TCGA) providing
one of the most comprehensive collections—comprising
11,125 patient samples with matched clinical annotations,
genomic sequencing, and protein expression data across 32
cancer types. As a result, histopathology Al models are often
trained on fewer than 1,000 patient samples, particularly
when genomic or proteomic data serve as labels. Limited
training sets increase the risk of data overfitting and poor
generalization.

Figure 5.3.1 illustrates the geographic distribution of U.S.
cohorts used to train deep learning algorithms. Most cohorts
originate from California, Massachusetts, and New York,
raising concerns about the limited scope of the datasets used
to train these algorithms.

US patient cohorts used to train clinical machine learning algorithms

by state, 2015-19

Source: Kaushal et al., 2020 | Chart: 2025 Al Index report
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These data limitations are more pronounced for three-
dimensional (3D) medical imaging. While Al has traditionally
focused on 2D modalities such as chest X-rays, histopathology
slides, and fundus photography, recent advancements have
expanded its application to 3D imaging modalities, including
computed tomography (CT), magnetic resonance imaging
(MRI), and 3D histopathology analysis. Three-dimensional
analysis provides richer data, enabling Al models to learn
patterns from volumetric structures and complex surfaces
that may not be apparent in 2D slices. Although promising
approaches have been developed for the use of Al to analyze
3D medical images, similar data limitations and needs
persist. Publicly available 3D datasets remain limited, with
UK Biobank (around 100,000 MRI scans) and TCIA (around
50,000 studies) among the largest. Although 3D samples
are routinely collected in histopathology, 3D imaging is
not standard practice, resulting in an absence of publicly
available 3D histopathology datasets. Standardization
challenges persist due to acquisition variability in pathology.
Differences in instrument settings, staining techniques, and
institutional practices introduce batch effects, which are
further exacerbated by limited training datasets.
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Training accurate Al models requires large datasets: CNNs
have succeeded with around 10,000 labeled images , but
transformers need orders of magnitude more data. MIMIC-
CXR (377,000 images) and CheXpert Plus (around 226,000
frontal-view radiographs with aligned radiology reports and
patient metadata) are important resources but remain smaller
than ImageNet (around 14 million images). Data completeness
and bias issues remain key challenges.

Figure 5.3.2 illustrates the token volume in text and image
datasets used to train various leading medical language and
imaging models, in comparison to various all-purpose text
and image models. GatorTron, a large clinical LLM designed
to extract patient information from unstructured electronic
health records, was trained on 82 billion tokens. In contrast,
Llama 3 was trained on 15 trillion tokens—nearly 182 times
more. On the imaging side, RadimageNet, an open radiologic
deep learning research dataset, contains 16 million image-
equivalent tokens, while DALL-E, an early OpenAl image
generator, was trained on approximately 6 billion—roughly
375 times more.

Training dataset token volumes: medical vs. nonmedical language and imaging models

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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Longitudinal imaging is important for modeling disease
progression but remains underrepresented. ADNI (around
2,000 participants over 15-plus years) exemplifies such
efforts, but scalable multimodal longitudinal datasets are rare.
Addressing these gaps requires privacy-preserving data-
sharing (e.g., federated learning), synthetic data generation,
and improved annotation strategies.
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To train and validate robust medical imaging Al models,
larger, more comprehensive, and multicohort collections of
training data are required. By increasing the availability of
high-quality, labeled training data, models can be expected
to achieve improved performance. Additionally, better
validation practices will bolster confidence in these models,
facilitating their transition into clinical practice.

Advanced Modeling Approaches

Figure 5.3.3 presents leading clinical imaging modeling approaches, notable releases per approach, and key challenges
associated with each.

Imaging modeling approaches and notable Al models
Source: Al Index, 2025

Notable releases

1. RoentGen (2022)
2. RNA-CDM (2023)
3. XReal (2024

1. CheXagent (2024)
2. Merlin (2024)

3. Med-Gemini (2024)
4. PathChat (2024)

5. TITAN (2024)

6. PRISM (2025)

7. BiomedParse (2025)
1. CTransPath (2022)
2. Virchow (2024)

3. UNI (2024)

4. MedSAM(2024)

1. HIPT (2022)

2. MEGT (2023)

3. MG-Trans (2023)

4. HIGT (2023)

5. Prov-GigaPath (2024)

Modeling approach Advantages Challenges

Diffusion models Generate synthetic medical images for Dataset biases, hallucinated
enhanced training, privacy, and pathol- artifacts, diagnostic uncer-
ogy-specific augmentation. Outperform | tainty.

GANSs in stability and diversity.

Integrate medical images with text for
improved diagnosis, segmentation,
and report automation. LVLMs extend
multimodal capabilities.

Data scarcity, generalization
to low-resource settings,
computational demands.

Large vision-language
models (LVLMs)

Pan-cancer detection, biomarker
prediction, and image segmentation.
Reduce annotation burdens.

2D vision-only foundation
models

Domain generalization,
cross-modal adaptability.

Multiscale/slide-level
models

Enhance whole-slide imaging analysis
using hierarchical transformers and
graph-based models for spatial relation-
ships. Improve diagnostic fidelity and
interpretability.

Scalability, computational
efficiency, dataset variability.

Figure 5.3.3
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In recent years, there has been a notable rise in foundation
models being used for medical imaging purposes. Figure 5.3.4
categorizes notable models by medical discipline. In recent
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years, the number of medical imaging foundation models has
risen sharply, with a particularly high concentration of newly
launched pathology models.

Medical disciplines and notable Al models
Source: Al Index, 2025

Discipline Notable releases

1. EchoCLIP (2024)
1. MUSK (2025)

1. RETFound (2023)

2. VisionFM (2024)

1. CTransPath (2022)

2. CHIEF (2024)

3. Prov-GigaPath (2024)
4. PathChat (2024)

5. TITAN (2024)

6. Virchow (2024)

7. UNI (2024)

1. RoentGen (2022)
2. CheXagent (2024)
3. Merlin (2024)

4. PRISM (2025)

Echocardiology

Oncology

Ophthalmology

Pathology

Radiology

Figure 5.3.4
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Clinical Knowledge
The following section examines the performance of LLMs and
recent Al models on key medical knowledge benchmarks.

MedQA

Evaluating the clinical knowledge of Al models involves
determining the extent of their medical expertise, particularly
knowledge applicable in a clinical setting.

Introduced in 2020, MedQA is a comprehensive dataset
derived from professional medical board exams, featuring
over 60,000 clinical questions designed to challenge

MedQA: test accuracy
Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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doctors. Al performance on the MedQA benchmark has
advanced significantly. A team of Microsoft and OpenAl
researchers recently tested o1, which achieved a new state-
of-the-art score of 96.0%—a substantial 5.8 percentage
point improvement over the record set in 2023 (Figure
5.4.1). Since late 2022, performance on the benchmark has
increased by 28.4 percentage points. As with other general
knowledge benchmarks discussed in Chapter 2, MedQA may
be approaching a saturation point, indicating the need for
more challenging evaluations.
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Highlight:

Al Doctors and Cost-Efficiency Considerations

Some researchers argue that evaluating medical LLMs
requires more comprehensive benchmarks than MedQA,
those that span a broader range of medical domains.
Relying solely on standard medical QA benchmarks like
MedQA—while valuable—may overlook the complexities
of real-world clinical applications. Alternatively, using
multiple benchmarks can offer greater clinical relevance

and a more robust assessment of model performance.

This year, new research from UC Santa Cruz, the University
of Edinburgh, and the National Institutes of Health has taken
a more expansive approach to testing Al medical systems.
The study evaluated five leading large language models,
including the newly developed o1, which features chain-of-
thought reasoning. The other models assessed were GPT-3.5,
Llama 3-8B, GPT-4, and Meditron-70B—the last of which
is a specialized medical model. These models were tested
on a diverse set of medical benchmarks covering various
tasks, including concept recognition, text summarization,
knowledge-based QA, clinical decision support, and medical
calculations. Figure 5.4.2 presents the average performance
of these five LLMs across 19 medical datasets. The findings
indicate that clinical knowledge performance in LLMs is
improving, particularly for newer models like o1 equipped
with real-time reasoning capabilities. However, persistent
challenges remain, including issues with hallucinations and
inconsistent multilingual performance.

Previous research, cited in last year’s Al Index, demonstrated
that prompting techniques like Medprompt can significantly
enhance LLM performance on medical benchmarks
without additional fine-tuning. OpenAl’s recently released
o1 model incorporates some of these insights by employing
runtime reasoning before generating final responses.
Researchers found that o1 outperforms the GPT-4 series
with Medprompt, even without specialized prompting
techniques. However, their analysis also highlights the
accuracy-cost trade-off associated with ol. While it
achieves a 5.8 percentage point higher score than GPT-4
Turbo with Medprompt, it is approximately 1.5 times more
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Performance of select LLMs on medical datasets
Source: Xie et al., 2024 | Chart: 2025 Al Index report
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Enhanced pareto frontier: accuracy vs. cost
Source: Nori et al., 2024
Figure 5.4.3

expensive. Figure 5.4.3 illustrates the cost versus accuracy
trade-off on the MedQA benchmark. This trade-off highlights
a key consideration for medical professionals deploying Al
in clinical settings: the need to balance performance gains
with computational costs.
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Evaluation of LLMs for Healthcare Performance

Overview
There has been an explosion in interest in the evaluation of language model performance on healthcare tasks. A PubMed search
for “large language model” returned 1,566 papers starting in 2019 with 1,210 published in 2024 alone (Figure 5.4.4).

Number of publications on large language models in PubMed, 2019-24
Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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A systematic review in early 2024 identified over 500 papers 5.4.5). Most of the healthcare studies that evaluated the
evaluating the performance of NLP on healthcare tasks performance of NLP systems focused on enhancing medical
with a heavy emphasis on medical decision-making (Figure knowledge (419) and making diagnoses (178).

Healthcare tasks, NLP and NLU tasks, and dimensions of evaluation across 519 studies
Source: RAISE Health, 2025 | Chart: 2025 Al Index report

Fairness, bias, and Deployment Calibration and
Accuracy Comprehensiveness Factuality Robustness toxicity evaluation metrics uncertainty
Enhancing medical o1 a4 23 16 10 3
knowledge
Making diagnoses 100 38 n 1 14 4 0
Educating patients 88 68 32 22 18 3 2
Making treain:lent a7 2 9 8 3 4 0
recommendations
semeiiceting 35 29 8 15 22 1 0
with patients
Care ccor\drnat!on 36 24 5 5 7 1 0
and planning
Triaging patients 24 [4 5 2 8 8 o
Ky 18 7 3 2 2 2 0
literature review
Synthesizing data 16 7 2 3 2 5 0
for research
Sianerating 8 8 2 0 3 0 0
medical reports
_Cenductmg g 7 z z z 0 0
medical research
Providing 8 5 3 3 1 1 0
asynchronous care
- Managing clinical
w
[ knowledge 2 2 * L J g 9
Clinical
note-taking 6 ° : L 8 J !
Generating clinical 3 0 0 0 0 0 0
referrals
Enhancing surg?lcal 3 3 1 1 0 0 0
operations
Biome ool 2 0 0 0 0 0 0
data mining
Generating billing 1 0 0 0 0 0 0
codes
Writing prescriptions 1 0 4] 1] [} [v] 0
Question answering* m 61 54 14 5
Text classification* 29 10 6 5 10 2 0
Information
extraction® = = 2 ® & G 9
Summarization* 29 21 7 3 8 0 1
Con\rel:satlonel P 6 1 1 5 4 0
dialogue*
Translation* 5 1 2 2 1 2 0
Figure 5.4.5%

4 The asterisks represent tasks in NLP and NLU.
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Diagnostic Reasoning With LLMs
Diagnostic errors account for substantial patient harm, and many organizations are exploring Al as a tool to improve the diagnostic
process.

Highlight:
LLMs Influence Diagnostic Reasoning

A 2024 single-blind, randomized trial tested GPT-4 LLM performance in clinical diagnosis

. . . . o Source: Goh et al., 2024 | Chart: 2025 Al Index report
assistance against conventional resources in tackling

complex clinical vignettes. The study involved 50 100 o

U.S.-licensed physicians and evaluated whether Al-

enhanced decision-making could improve diagnostic %

accuracy and efficiency. The results revealed no 80

significant improvement when physicians used GPT- o

4 alongside traditional resources. In fact, physicians

with Al assistance performed only slightly better (76%) 60

than those who relied solely on conventional tools § 50

(74%). However, in a secondary analysis, GPT-4 alone

outperformed both groups, achieving a 92% diagnostic 40

reasoning score, a 16-percentage-point increase over 50

physicians working without Al (Figure 5.4.6). Despite

Al’s superior standalone performance, integrating it into Y

clinical workflows proved challenging. There was no clear 10

advantage in time efficiency, as case completion times

remained statistically unchanged across conditions. ° GPT-4 alone Physician + GPT-4 Physician +

conventional
resources only

While purely autonomous Al outperformed physician-

only efforts, simply giving doctors access to an LLM Flgure 54.6

did not enhance their performance. This underscores

a phenomenon seen in other Al-human collaborations:

Bridging the gap between excellent model performance

in isolation and effective synergy with clinicians requires

rethinking workflows, user training, and interface design.
Management Reasoning and Patient Care Decisions referred to as “management reasoning.” Researchers tested
Beyond diagnosis, physicians must juggle treatment decisions, whether LLMs could improve these complex, context-
risk-benefit trade-offs, and patient preferences—collectively dependent skills.
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Highlight:
GPT-4 Assistance on Patient Care Tasks

A 2024-25 prospective, randomized, controlled trial Impact of LLM assistance on clinical management

0 o S : Goh et al., 2025 | Chart: 2025 Al Ind t
evaluated the impact of GPT-4 assistance on complex —~ore®=onete Ul neexrepor

clinical management decisions. The study involved 100
92 physicians, with half using GPT-4 alongside
standard resources and the other half relying solely on »°
conventional references. Physicians assisted by GPT-4 80
outperformed the control group by approximately 6.5 o
percentage points (Figure 5.4.7). Interestingly, GPT-4

alone performed on par with GPT-4-assisted physicians, 60
suggesting that in certain well-defined scenarios, near- § 50
autonomous Al-driven management support may be
feasible. However, Al assistance came with a trade- 40
off, as physicians using GPT-4 spent slightly longer on 20
each scenario—a delay researchers attributed to deeper l
reflection and analysis. Generative Al can meaningfully A
improve clinical decision-making, but its impact may be 10
qualitative rather than purely efficiency-driven.

GPT-4 alone Physicians + GPT-4 Physicians +
conventional
resources only

Figure 5.4.7
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Ambient Al Scribes

Clinical documentation has long been a source of clinician
burden and burnout. Ambient scribe technology has rapidly
evolved to integrate LLMs into the processing pipeline for
physician-patient recordings. The first study, published in
NEJM Catalyst, describes the launch of ambient Al scribe
technology at Kaiser Permanente Northern California in late
2023. The technology was eventually adopted by thousands
of clinicians before the end of the pilot (Figure 5.4.8). This
was followed by a second study, published in JAMIA,
that describes the pilot experience at Intermountain
Health. Both studies were based on earlier versions of the
technology that were not fully automated or integrated into
the electronic health record (EHR).
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Cumulative Use of the Ambient Artificial Intelligence (Al) Scribe Tool,
October 16—December 24, 2023

Between go-live on Octaber 16, 2023, and December 24, 2023, there were 3,442 unique physician and
staff users (Panel A and a total of 303,266 patient—physician encounters in which the Al scribe was
enabled and in which the encounter lasted at least 2 minutes (Panel B).

Panel A. Unique Physicians Ever Using Al Seribe
4,000
3.500
3,000
2,500
2,000
1,500
1,000

500

0 T T T T T T T T T T
10716  10/23 10430 146 11713 11/20 11727 12/4 12711 1218

Week - 2023

Panel B. Cumulative Al Scribe Visits

350,000

300,000

250,000

200,000

150,000

100,000

50,000

0
10716 10/23 10/30 1176 11/13 1/20 11/27 12/4 12711 12/18
Week - 2023
Al = artificial intelligence.
Source: The authors
NEJM Caralyst (catalystnejm.orgl © Massachusetts Medical Society

Source: Tierney et al., 2024
Figure 5.4.8
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Researchers at Stanford conducted a two-part study on the
use of ambient Al scribe technology, building on prior work
by testing a fully integrated, automated Al scribe system.
The study demonstrated improvements in both objective
measures, such as documentation time, and subjective
measures of physician experience. Adoption was strong,
with an average uptake of 55% among physicians. The Al
scribe provided notable efficiency gains, saving physicians

Impact of Al Scribe on physician EHR usage

Source: Ma et al., 2024 | Chart: 2025 Al Index report
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approximately 30 seconds per note and reducing overall EHR
time by about 20 minutes per day (Figure 5.4.9). Additionally,
physicians reported significant reductions in burden
and burnout, with average decreases of 35% and 26%,
respectively. These findings suggest that Al-powered scribe
technology can meaningfully improve physician workflow
and well-being, offering both time savings and relief from
administrative strain.
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Investment in ambient scribe technology is reported to reach
almost $300 million in 2024. While clinical documentation
has been the starting point for the technology and the
evaluations performed to date, optimists envision ubiquitous
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Figure 5.4.9

ambient listening technology in both outpatient and inpatient
settings that will eventually support order placement, billing
and coding, and real-time clinical decision support.
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[Az

Deployment, Implementation, Deimplementation

FDA Authorization of Al-Enabled Medical Devices
The deployment of Al in clinical settings has grown
exponentially over the past decade, highlighted by the
dramatic increase in the number of Al-enabled medical
devices authorized by the U.S. Food and Drug Administration
(FDA).

The FDA authorized its first Al-enabled medical device in
1995. For the next two decades, annual approvals remained
in the single digits. In 2015 alone, six Al medical devices were
approved. Since then, the number of yearly approvals has
surged, peaking at 223 in 2023 (Figure 5.4.10).

Number of Al medical devices approved by the FDA, 1995-2023

Source: FDA, 2024 | Chart: 2025 Al Index report
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Successful Use Cases: Stanford Health Care

In practice, transitioning Al models into real-world use
requires a framework that ensures fairness, utility, and
reliability. Stanford Health Care has led the way by evaluating

and implementing Al tools using its FURM (Fair, Useful,
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Figure 5.4.10

Reliable, Measurable) framework. Among the six Al use
cases assessed, two have been successfully implemented:
(1) screening for peripheral arterial disease (PAD) and (2)
improving documentation and coding for inpatient care. This
section details screening for peripheral arterial disease.
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Screening for Peripheral Arterial Disease

Peripheral arterial disease (PAD) is a chronic vascular
condition that often goes undiagnosed in its early stages,
leading to severe complications such as critical limb ischemia
and amputation. To improve early detection and intervention,
Stanford Health Care developed and implemented an Al-
enabled PAD classification model designed to enhance
screening and optimize patient care.

The primary goal of the PAD screening tool is to facilitate
earlier diagnosis in primary care populations, allowing for
medical or surgical intervention before the disease leads to
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severe complications. By identifying high-risk patients, the
model also helps optimize resource allocation, ensuring that

those most in need receive immediate follow-up and care.

To integrate seamlessly into clinical workflows, the Al tool
was designed to automatically assess PAD risk and flag
high-risk individuals for further evaluation. If the condition is
confirmed, the patient is referred for a vascular consultation.
Figure 5.4.11 illustrates the proposed model and workflow
details for integrating PAD screening into clinical workflows,
including risk assessment, referrals, and patient follow-up.

Proposed model and workflow for integrating PAD screening into clinical practice

Source: Callahan et al., 2024

Following a successful pilot phase, the PAD screening tool
advanced to Stage 2 and was fully implemented at Stanford
Health Care. The model is expected to impact approximately
1,400 patients annually. Beyond its clinical benefits, the
program has demonstrated financial sustainability, operating
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Figure 5.4.11

independently without external funding. By increasing
early PAD detection, reducing the likelihood of severe
complications, and improving patient outcomes, this Al-
driven approach is reshaping the standard of care for PAD

management.



https://catalyst.nejm.org/doi/full/10.1056/CAT.24.0131

| I Artificial Intelligence
HI Index Report 2025

Chapter 5: Science and Medicine
5.4 Clinical Care, Non-Imaging

Social Determinants of Health

The integration of LLMs and Al-based clinical decision Extracting SDoH From EHR and Clinical Notes
support (CDS) systems is transforming medicine, though Fine-tuned multilabel classifiers (Flan-T5 XL) outperformed

adoption varies by specialty. While some embrace LLMs, ChatGPT-family models in identifying SDoH in clinical notes
others remain cautious. This review explores research and and were less sensitive to demographic descriptors. They also
innovations, emphasizing the role of a strong evidence base. exhibited lower bias, with reduced discrepancies when race,
A key aspect is addressing social determinants of health ethnicity, or gender was introduced. Figure 5.4.12 illustrates
(SDoH), such as socioeconomic status and environment. In the performance of various models on SDoH identification
2024, Al advancements targeted SDoH, improving patient tasks in a radiotherapy test set. Newer, larger models like
care and health equity. Flan-T5-XXL, augmented with synthetic and gold data

(SDoH-labeled sentences), showed superior performance. As
models have scaled and incorporated more data over time,
their ability to identify SDoH has improved.

Model performance on in-domain RT test dataset (any SDoH)
Source: RAISE Health, 2025 | Chart: 2025 Al Index report

1.00
0.80
0.65 0.65
[}
<
3 0.60
2 0.53
Y
o
] 0.42
©
S 040 0.36
0.20
0.00 o ) 0 ® 0 ® o © 0 ®© o © aJ a 4 ) ] ©
22 = 22 22 22 % 5 2 5% X % %= X8 F XEeE
el © Qo Qa o Q -] & © < il n T L © [to) © s ©
k320 (L] b T b 29 b3 620 Ko © o F20 © 32 0
@ 0% x5 L3 20w it 2o c 5 et c 0% HE o
w o0 w o LD Do ) ;T O o S 5 c o EU)H) c Do
o< s @ o S c S c S c s ol & s 8 <5
x =1 o= I_—I_.t‘: o = S = ¢ = [T x c [T =
S H E 2z Lz -z3 H E Y B
2018 2020 2022
Figure 5.4.12
Extracting SDoH from EHRs helps healthcare providers documentation, resource allocation, and health equity while
address social needs like housing instability or food insecurity. emphasizing the need for bias mitigation and robust synthetic

These findings highlight LLMs’ potential to enhance SDoH data methods.
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Al Adoption Across Medical Fields and the Integration of SDoH
Figure 5.4.13 highlights various medical fields and illustrates how Al integrates social determinants of health in each.

Field Recent research Description of integration
Oncology Istasy et al., 2024

for patients.

In cancer care, Al-driven tools have been developed to consider SDoH in treatment planning.
By incorporating factors such as a patient’s access to care and support systems, these tools
assist oncologists in creating personalized treatment plans that are both effective and feasible

Cardiology Snowdon et al., 2023 Al models in cardiology have been enhanced to include SDoH, improving the accuracy of risk
assessments for conditions like hypertension and heart failure. This inclusion allows for more
uer et al., 2024 comprehensive patient evaluations and tailored management strategies.
Psychiatry Stade et al., 2024 LLMs have been applied to analyze community-level SDoH data, aiding in the allocation of

mental health resources. By identifying areas with high social risk factors, healthcare systems
can prioritize interventions and support services in communities with the greatest need.

Synthetic Data

Synthetic data is revolutionizing healthcare by enhancing
privacy-preserving analytics, clinical modeling, and Al
training. It optimizes workflows, simulates rare cases,
and supports Al-driven innovations. However, scalability
concerns, as noted in the first chapter of this year’s Al Index,
call for cautious adoption.

Clinical Risk Prediction
Arecent study validated synthetic data for privacy-preserving

Principal component analysis
Source: Qian et al., 2024

5 An ever-smoker is someone who has smoked at least 100 cigarettes in their lifetime.
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clinical risk prediction. Using ADSGAN, PATEGAN, and
DPGAN, researchers modeled lung cancer risk in ever-
smokers from the UK Biobank.® The figure below compares
PCA eigenvalues, showing how ADSGAN and PATEGAN
closely match real data distributions, enabling reliable
clustering and feature selection (Figure 5.4.14). These findings
demonstrate that synthetic datasets can preserve statistical
fidelity, support exploratory analysis, and develop predictive
models without real and identifiable patient data.

Figure 5.4.14



https://pmc.ncbi.nlm.nih.gov/articles/PMC9667381/
https://pubmed.ncbi.nlm.nih.gov/38846264/
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(24)00151-1/fulltext
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https://www.nature.com/articles/s44184-024-00056-z
https://www.nature.com/articles/s41598-024-72894-y#ref-CR21
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Drug Discovery Percolation threshold prediction and validation

A recent Nature study introduced a based on Al-generated synthetic structures
Source: Hornick et al., 2024

generative Al approach for in silico

formulation optimization and particle

engineering in drug development. Using an

image generator guided by critical quality

attributes, it creates digital formulations

for analysis without extensive physical

testing. The study validated this method

by predicting the percolation threshold

of microcrystalline cellulose (MCC) in

oral tablets. Figure 5.4.15 compares the

tortuosity calculations of real tablet volumes

(green  squares) with Al-synthesized

volumes (red circles).® Their close alignment Figure 5415
suggests that synthetic data holds promise
for modeling drug properties and improving
Al-driven drug discovery.

Data Generation Platforms Areas under the curve for evaluating synthetic heart disease datasets
Source: Rashidi et al., 2024
Platforms are necessary to demonstrate,

standardize, and automate the creation
of synthetic data. Recently published

research has demonstrated that large-scale
synthetic data generation and validation
is not only feasible but also capable of
significantly enhancing Al applications in
medicine with their synthetic tabular neural
generator (STNG) framework. Figure
5.4.16 compares the area-under-the-curve
values for real and synthetic heart disease
datasets to evaluate the effectiveness
of different synthetic data generation
methods. In many cases, there is a fairly
close overlap between the real datasets
and the synthetic datasets, showing the Figure 5.4.16
ability of synthetic data to model complex
health conditions closely. Advancements in
synthetic data generation methodologies
can improve data fidelity while minimizing
privacy risks.

6 Tortuosity is a measure of how convoluted or twisted a path is compared to the shortest possible straight-line distance between two points.
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Electronic Health Record System

Al integration in electronic health records (EHRs) can ease
healthcare burdens by streamlining administration, enhancing
clinical decision support, and improving patient care. With
major vendors—Epic, Oracle Health (formerly Cerner),
Meditech, and TruBridge (formerly CPSI)—dominating the
market, their Al tools can be widely adopted within their
networks. As of 2021, EHR adoption had approached 90% for
any system and 80% for certified EHR systems.
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A 2023 American Hospital Association IT survey found that
most hospitals using ML or predictive models in their EHRs
relied on a dominant vendor for inpatient care (Figure 5.4.17).
Adoption was highest with Epic, Cerner, and Meditech. While
Epic, Cerner, and CPSI hospitals primarily used vendor-
developed models, Meditech and others more often adopted
third-party or in-house solutions (Figure 5.4.18).

Predictive model use across primary inpatient EHR vendor

Source: AHA survey, 2024 | Chart: 2025 Al Index report

B Machine learning (ML) Other non-ML predictive model

M Neither/do not know

710
700

600

500

400

300

Number of hospitals

295
190 191
2
00 160
100 I
60
: []

244

144

31
22
4 5

Epic Cerner Meditech

O Table of Contents

9 Chapter 5 Preview

CPSI/Evident Altera Other

Vendor

Figure 5.4.17



https://klasresearch.com/report/us-acute-care-ehr-market-share-2024-large-organizations-drive-market-energy/3333
https://www.cdc.gov/nchs/nehrs/results/index.html#:~:text=88.2%25%20EHR%20adoption%E2%80%8E,using%20a%20certified%20EHR%20system.
https://www.ahadata.com/

Chapter 5: Science and Medicine
5.4 Clinical Care, Non-Imaging

Developer of predictive models across EHR vendor
Source: AHA survey, 2024 | Chart: 2025 Al Index report

[Az

M In-house EHR developer A third-party developer

B Self-developed
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Al integration into EHRs could streamline clinical workflows
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and enhance provider and patient experiences. However, it
remains unclear whether Al-enabled health IT will benefit
underserved communities, which often struggle with
technological adoption. Rural areas, for example, face

barriers like limited broadband access, weak healthcare
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IT infrastructure, and EHR functionality constraints—key
enablers of Al-driven healthcare. Additionally, it is important
to assess whether Al tools are equitably developed for both
basic and comprehensive EHR systems, as many resource-

limited settings still rely on the former.
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Clinical Decision Support

Al has transformed how healthcare providers diagnose,
predict, and manage diseases with an increasing focus on
rigorous evaluation of Al-based systems in clinical trials.
The evolution of Al in clinical decision support (CDS)
reflects a shift from reactive interventions—e.g., during
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the COVID-19 pandemic—to proactive, data-driven clinical
decision-making with clinical trials increasing over the years.
The number of clinical trials that have included mentions of
artificial intelligence is steadily rising (Figure 5.4.19).

Number of clinical trials that have included mentions of Al, 2014-24

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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The COVID-19 pandemic accelerated Al adoption in triage,
resource allocation, and outcome prediction, showcasing the
technology’s potential in real-time CDS. Post-pandemic, Al
expanded beyond emergency response to managing chronic
disease, optimizing procedures, and streamlining workflows.
Trials like the CERTAIN Study demonstrated how Al-driven
real-time procedural support could improve diagnostic
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accuracy in gastrointestinal procedures. By 2023, Al in CDS
extended to medication safety and workflow optimization, as
seen in Preventing Medication Dispensing Errors in Pharmacy
Practice, which used Al to detect real-time medication errors.
Globally, Al-driven clinical trials have sharply risen, with China
(105 trials), the U.S. (97), and Italy (42) leading in 2024 (Figure
5.4.20).

Number of clinical trials that have included mentions of Al by select geographic areas, 2021-24

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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The increasing integration of Al in medical research
and clinical care as discussed in previous sections
brings both promises and challenges. Al systems
lean heavily on large amounts of data for training. The
collection, use, and sharing of this data—especially in
high-stakes domains such as healthcare—can raise
various ethical concerns.

5.5 Ethical
Considerations

Meta Review

For this section, the Al Index conducted a meta
review of thousands of medical ethics studies to
glean insights on the state of the field. The team’s
methodology is highlighted in Figure 5.5.1.

Attention to the ethical issues in medical Al has
increased in each of the past five years. The number
of publications related to ethics and medical Al
increased fourfold from 2020 to 2024 (Figure 5.5.2).

Number of medical Al ethics publications, 2020-24

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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5.5 Ethical Considerations

The focus of Al applications in medical ethics literature has evolved over time. Figure 5.5.3 illustrates the ethical issues discussed
in Al medical papers from 2020 to 2024. In 2024, bias and privacy were the most frequently cited concerns, followed by equity.
In contrast, privacy was a more prominent topic than bias in 2020, but this trend has since shifted.

Top 10 ethical concerns discussed in medical Al ethics publications, 2020-24
Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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In terms of Al tools, much attention has been paid in medical ethics literature to OpenAl’s GPT series (e.g., ChatGPT) (Figure
5.5.4). This reflects an expanding interest in large-language models over the past few years.

Al tools discussed in medical Al ethics publications, 2020-24
Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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5.5 Ethical Considerations

Figure 5.5.5 and Figure 5.5.6 show the number and total
funding of NIH grants for medical Al ethics projects by fiscal
year. The number of grants skyrocketed from 25 in 2023 to

Number of NIH grants for medical Al ethics by fiscal
year, 2020-24

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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337in 2024 (Figure 5.5.5). Similarly, total funding soared from
$16 million in 2023 to $276 million in 2024—an almost 17-fold
increase in just one year.

NIH grant funding for medical Al ethics by fiscal year,
2020-24

Source: RAISE Health, 2025 | Chart: 2025 Al Index report
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Chapter 5: Science and Medicine
5.6 Al Foundation Models in Science

This year, dozens of foundation models have been developed across various
scientific fields. Some are refined large language models, adapted for
specific domains using relevant publications; others are trained from scratch
with specialized data, such as time series or weather data. These foundation
models are then fine-tuned for targeted scientific tasks or applications.

5.6 Al Foundation Models in Science

Highlight:
Notable Model Releases

Al has driven significant progress in other scientific analysis represents an initial effort by the Al Index, which
domains, including physics, chemistry, and geosciences. aims to expand and deepen its coverage of Al-driven
The table below highlights some of the most notable scientific progress across a broader range of disciplines in
recent launches in these areas, alongside newly released the future.

resources that further track these developments. This

Date Name Domain Significance Image
Feb 6, 2024 CrystalLLM Materials Researchers fine-tuned LLaMA-2 70B on
science text-encoded atomistic data to generate

stable materials, achieving nearly double
the metastability rate of a leading
diffusion model (49% vs. 28%) while
maintaining physical plausibility. The
approach enables flexible applications
like unconditional generation, structure
infilling, and text-guided design, with

model scale enhancing symmetry Figure 5.6.1
awareness. Source: Gruver et al., 2024
Feb 14, 2024 LlaSMol Chemistry To address LLMs’ poor performance on

chemistry tasks, researchers introduce
SMollnstruct, a high-quality dataset with
over 3 million samples across 14 tasks;
and LlaSMol, a set of models fine-tuned
on it. Among them, the Mistral-based Figure 5.6.2
LlaSMol outperforms GPT-4 and Claude | Source: Yuetal., 2024
3 Opus by a wide margin, approaching
task-specific model performance
while tuning just 0.58% of parameters,
demonstrating the power of domain-
specific instruction tuning.
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Highlight:

Notable Model Releases (cont’d)
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Apr 23, 2024

Earth science

Oak Ridge National Lab introduced
ORBIT, a 113B-parameter vision
transformer and the largest Al model
ever built for climate science—1,000
times larger than prior models. Trained
using a novel parallelism technique and
tested on the Frontier supercomputer,
ORBIT achieved up to 1.6 exaFLOPS
of sustained performance. This
breakthrough sets a new bar for Al-
driven Earth system prediction.

Figure 5.6.3
Source: Wang et al., 2024

May 20, 2024

Aurora

Earth science

Aurora is a large-scale foundation model
trained on over a million hours of Earth
system data, delivering state-of-the-art
forecasts for air quality, ocean waves,
cyclone tracks, and high-resolution
weather. It outperforms traditional
systems while operating at a fraction

of the computational cost, and can be
fine-tuned across domains with minimal
resources—marking a major step toward
accessible, Al-driven Earth system
forecasting.

Figure 5.6.4
Source: Bodnar et al., 2024

Jul 22, 2024

NeuralGCM

Weather
forecasting

This study introduces NeuralGCM,

a hybrid model that combines a
differentiable, physics-based solver
with machine learning components to
simulate both weather and climate. It
matches or exceeds leading ML and
physics-based models in short- and
medium-term forecasts, accurately
tracks climate metrics over decades,
and captures complex phenomena like
tropical cyclones—all while offering
massive computational savings.

Figure 5.6.5
Source: Kochkov et al., 2024
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5.6 Al Foundation Models in Science

Highlight:
Notable Model Releases (cont’d)

Aug 18,2024 | PhysBERT Physics Physics texts are notoriously difficult for
NLP due to their specialized language
and complex concepts. PhysBERT, the
first physics-specific, text-embedding
model, addresses this by outperforming
general-purpose models on physics-
specific tasks. Trained on 1.2 million arXiv | Figure 5.6.6

papers and fine-tuned with supervised Source: Hellert et al., 2024
data, it significantly boosts performance
in information retrieval and subdomain

fine-tuning.
Sep 16,2024 | FireSat Fire Google’s FireSat is a satellite-based
prediction wildfire detection system that uses

Al to identify fires as small as 5x5
meters within 20 minutes of ignition
by analyzing real-time imagery and
environmental data. Developed in
partnership with Earth Fire Alliance
and Muon Space, it not only enhances
disaster response but also advances
global wildfire research.

Figure 5.6.7
Source: Google, 2024

Dec 4, 2024 GenCast Weather Google DeepMind’s GenCast is an Al-
prediction powered weather model that delivers
highly accurate 15-day forecasts using a
diffusion-based approach, outperforming
traditional systems like the ENS on
nearly all metrics. It generates forecasts
in minutes instead of hours and has
broad applications in disaster response,
renewable energy, and agriculture.

Figure 5.6.8
Source: Google, 2024

Dec 9, 2024 AlphaQubit Quantum In late 2024, Google DeepMind and
computing Google Quantum Al released AlphaQubit,
an Al-based decoder with state-of-the-art
quantum error detection. Soon after, they
introduced Willow, the first quantum chip
to achieve exponential error suppression
and correction below the surface code
threshold—a major milestone in the field.
Willow also completed a benchmark task
in under five minutes that would take the
fastest supercomputer over 10 septillion

years, longer than the age of the known Figure 5.6.9
Source: Google, 2024

universe.
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CHAPTER 6:
Policy and Governance

Overview

Al’'s advancing capabilities have captured policymakers’ attention, leading to an
increase in Al-related policies worldwide. In recent years, nations and political bodies,
including the United States and the European Union, have introduced significant
regulations. More recently, many governments have announced major investments in
Al infrastructure. This wave of policymaking reflects a growing recognition of the
need to both regulate Al and harness its transformative potential.

This chapter explores global Al governance, starting with a timeline of key Al
policymaking events in 2024. It then examines global and U.S. legislative efforts,
analyzes Al-related mentions in legislative discussions, and reviews how U.S. regulatory
agencies have approached Al. The chapter concludes with an analysis of public
investment in Al in the U.S., with most data sourced independently by the Al Index.
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Chapter Highlights

1. U.S. states are leading the way on Al legislation amid slow progress at the federal level. In 2016, only one
state-level Al-related law was passed, increasing to 49 by 2023. In the past year alone, that number more than doubled to 131.
While proposed Al bills at the federal level have also increased, the number passed remains low.

2. Governments across the world invest in Al infrastructure. Canada announced a $2.4 billion Al infrastructure
package, while China launched a $47.5 billion fund to boost semiconductor production. France committed €109 billion to Al
infrastructure, India pledged $1.25 billion, and Saudi Arabia’s Project Transcendence represents a $100 billion Al investment

initiative.

3. Across the world, mentions of Al in legislative proceedings keep rising. Across 75 major countries, Al
mentions in legislative proceedings increased by 21.3% in 2024, rising to 1,889 from 1,557 in 2023. Since 2016, the total number
of Al mentions has grown more than ninefold.

4. Al safety institutes expand and coordinate across the globe. In 2024, countries worldwide launched international
Al safety institutes. The first emerged in November 2023 in the U.S. and the U.K. following the inaugural Al Safety Summit.
At the Al Seoul Summit in May 2024, additional institutes were pledged in Japan, France, Germany, Italy, Singapore, South
Korea, Australia, Canada, and the European Union.

5. The number of U.S. Al-related federal regulations skyrockets. In 2024, 59 Al-related regulations were
introduced—more than double the 25 recorded in 2023. These regulations came from 42 unique agencies, twice the 21
agencies that issued them in 2023.

6. U.S. states expand deepfake regulations. Before 2024, only five states—California, Michigan, Washington, Texas,
and Minnesota—had enacted laws regulating deepfakes in elections. In 2024, 15 more states, including Oregon, New Mexico,
and New York, introduced similar measures. Additionally, by 2024, 24 states had passed regulations targeting deepfakes.
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Chapter 6: Policy and Governance
6.1 Major Global Al Policy News in 2024

This chapter begins with an overview of
some of the most significant Al-related
policy events in 2024, as selected by the
Al Index Steering Committee.

6.1 Major Global Al Policy News in 2024

Singapore plans to invest $1B in Al over 5 years

In his budget speech on February 16, Deputy Prime Minister and
Finance Minister Lawrence Wong announced that the government
will allocate over $1 billion over the next five years to support Al
computation, talent development, and industry growth.

Source: The Straits Times, 2024
Figure 6.1.1

m Abu Dhabi launches $100B Al investment firm

In March 2024, Abu Dhabi established MGX Fund Management
Limited, a state-owned investment firm specializing in Al
technologies, with a target of managing $100 billion in assets. This
initiative aligns with the UAE’s strategic objective to position itself as
a global leader in Al innovation and technology.

Source: Bloomberg, 2024
Figure 6.1.2

m Artificial Intelligence Act is passed by European Parliament

The landmark EU Al Act, the first of its kind, was passed by the
European Parliament three months after a provisional agreement on
the bill was reached. The legislation introduces sweeping provisions
around Al systems, including transparency and reporting obligations,
risk-based regulations, and bans on certain applications including
social scoring, human manipulation, and biometric categorization
that uses “sensitive characteristics.” Most of the Act’s provisions will Source: Time, 2023

Figure 6.1.3
come into effect in 2026 after a two-year implementation period.

The Act is significant for its restrictive nature, building on the already
stringent EU privacy regulations. It takes a unique approach to
regulating generative Al, differing from other proposed legislation,
and has been met with resistance from the industry.
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6.1 Major Global Al Policy News in 2024

India drops plan to require government approval for
launch of new Al models

Less than a month after issuing an advisory requiring tech firms to
obtain government approval before launching new Al models, India
releases revised guidelines for companies’ self-regulation, following
backlash from entrepreneurs and investors. Underthe new guidelines,
firms must inform users if their models are undertested or unreliable.
India’s IT Ministry retained its emphasis that Al models should not
undermine electoral integrity or promote bias and discrimination.
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Source: TechCrunch, 2024
Figure 6.1.4

Mar. 17, 2024

India launches IndiaAl Mission with $1.25B investment

In March 2024, India launched the IndiaAl Mission to strengthen its
Al ecosystem. The $1.25 billion initiative aims to build 10,000-plus
GPUs via public-private partnerships, develop a national nonpersonal
data platform, and support homegrown Al models and deep-tech
startups. It also prioritizes ethical Al governance and expanding Al
labs beyond major cities to democratize access.

Source: Nature, 2024
Figure 6.1.5

Mar. 20, 2024

French government fines Google 250 million euros over
use of copyrighted information

France’s competition watchdog, the Autorité de la Concurrence,
took a harsh stance toward negligent model training when it fined
Google 250 million euros for using French news content to train
Bard, now Gemini, the company’s Al-powered chatbot—without
notifying media companies. The government cited the offense as a
breach of EU intellectual property rules, and claimed it prevented
publishers and press agencies from negotiating fair prices. Google
accepted the settlement and proposed a series of measures to
mitigate scraping issues.

Source: NBC News, 2024
Figure 6.1.6
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6.1 Major Global Al Policy News in 2024

U.N. General Assembly adopts resolution promoting
“safe, secure, and trustworthy” Al

Backed by more than 120 member states, the U.N. General assembly
adopted a “historic” U.S.-led resolution (although not officially
legally binding) on the promotion of “safe, secure, and trustworthy”
artificial intelligence systems. The assembly called on stakeholders
to ensure that artificial intelligence systems be used in compliance
with human rights laws, recognizing the role these systems may
play in accelerating progress toward reaching the U.Ns Sustainable
Development Goals. The resolution was supported by more than 120
states, including China, and endorsed without a vote by all 193 U.N.
member states.
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Source: UN News, 2024
Figure 6.1.7

Apr. 7, 2024

Canada pledges CA$2.4B investment to ensure country’s
Al advantage

The Canadian Federal Budget for 2024 featured a CA$2.4 billion
package of measures to “secure Canada’s Al advantage” in the
midst of an intensifying global race for Al development and
adoption. Funding would be directed toward a range of initiatives,
including increasing capabilities and infrastructure for researchers
and developers, boosting Al startups, helping small and medium
businesses increase productivity through Al, supporting workers
impacted by Al, and creating a new Canadian Al Safety Institute.

Source: Center for International
Governance Innovation, 2024
Figure 6.1.8

May 11, 2024

U.K. Al Safety Institute launches open-source tool for
assessing Al model safety

The agency released a toolset, called Inspect, designed to assess Al

models’ capabilities in a range of areas, including core knowledge,
ability to reason, and autonomous capabilities. The Institute
claimed it was the first time an Al safety testing platform had been
spearheaded by a government-backed body, and made available for
public use under an open-source license in order to benefit industry,
research organizations, and academia.

Source: TechCrunch, 2024
Figure 6.1.9
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6.1 Major Global Al Policy News in 2024

May 21, 2024

U.K. and South Korea cohost Al safety summit in Seoul

At the Al Seoul Summit, attending countries shared the safety
measures they adopted in line with the Bletchley Declaration,
which was signed the year prior at the U.K. Al Safety Summit. The
declaration emphasizes the ethical and responsible development of
Al. Building on the progress made at the U.K. summit, countries have
since launched or announced plans for Al safety institutes. In Seoul,
these nations took another step forward by signing a letter of intent
to establish a collaborative network of institutes, highlighting the
importance of global cooperation in advancing Al safety.
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Source: Center for Strategic and
International Studies, 2024
Figure 6.1.10

May 27, 2024

China creates country’s largest-ever state-backed
investment fund to back its semiconductor industry

China launched a fund worth $47.5 billion to boost semiconductor
production. The launch marks the third phase of China’s “Big Fund,”
which has supported the industry’s development since 2014,
including crucial investments into the country’s two largest chip
foundries. The move comes amid rising U.S. export controls on
critical technologies like semiconductors that underpin hardware
components like GPUs used to train Al systems.

Source: Reuters, 2024
Figure 6.1.11

May 28, 2024

European Commission establishes Al Office

Over three years after the EU Al Act was proposed, the European
Commission unveils its cornerstone. The Al Office will play a key role
in implementing the Act, enforcing standards for general-purpose
Al models, coordinating the development of codes of practice, and
applying sanctions for offenses under the Act. With over 140 staff
members, the body consists of five units dedicated to different Al-
related goals, including promoting societal good through Al and
pursuing excellence in Al and robotics.

Source: Center for Strategic and
International Studies, 2024
Figure 6.1.12
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Jun. 26, 2024

U.S. NIST unveils framework to help organizations
identify and mitigate GenAl risks

The National Institute of Standards and Technology (NIST) launches
a voluntary framework to help organizations identify unique
risks posed by generative Al and recommends a series of actions
for mitigating those risks. The framework extends the NIST Al
Risk Management Framework released in 2023. Recommended
actions include determining Al risk tolerance and respective risk
management needs, establishing clear responsibilities for managing
Al risks, and involving nondeveloper experts in regular assessment
and updates. The framework followed the release of a NIST
document on adversarial machine learning outlining a taxonomy of

attack types, the effects of such attacks, and mitigation strategies.
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Source: FedScoop, 2024
Figure 6.1.13

Jul. 25, 2024

U.S. State Department releases Al Risk Management
Profile for Human Rights

The U.S. State Department designed the Risk Management Profile for

Artificial Intelligence and Human Rights as a guide for governments,
businesses, and civil society to align Al risk management with

human rights protections. Built on the NIST Al Risk Management
Framework, the Profile outlines four key functions—govern, map,
measure, and manage—to assess and mitigate Al risks, from bias to
misuse for surveillance. By bridging Al governance and human rights,
it provides a globally applicable tool for responsible Al development
and deployment.

Source: U.S. Department of State, 2024
Figure 6.1.14

Aug, 2, 2024

U.K. withdraws £1.3B promised for technology and
Al infrastructure

The U.K’s Labour government canceled £1.3 billion in funding
promised for technology and Al projects, explaining that the
commitments made by the previous government had been
“underfunded.” Announced in 2023, the projects included £500
million for the Al Research Resource, which funds computing power,
and £800 million for the creation of the University of Edinburgh’s
exascale supercomputer.

Source: BBC, 2024
Figure 6.1.15
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6.1 Major Global Al Policy News in 2024

Sep. 13, 2024

U.S. White House launches task force on Al data center
infrastructure

A White House meeting brought together federal officials and
technology executives to discuss securing power sources for robust
data center infrastructure critical to Al models. Executives from
OpenAl, Anthropic, Amazon Web Services, Nvidia, and Alphabet
were present. A White House press release emphasized that
advancing Al development in the U.S. is vital for national security
and ensuring Al systems are safe, secure, and trustworthy. The
newly formed Al data center infrastructure task force will identify
opportunities and work with agencies to prioritize the development
of Al data centers.
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Source: FedScoop, 2024
Figure 6.1.16

Sep. 17, 2024

California governor signs three bills on Al and elections
communications

Ahead of the 2024 San Francisco mayoral election, Governor Gavin
Newsom announced the signing of three bills into law aimed at
combating deepfake election content. AB 2655, AB 2839, and AB
2355 require large online platforms to remove or label digitally
altered election content during specified periods, expand the time
frame for prohibiting the distribution of deceptive Al-generated
election content, and mandate that electoral ads using Al-generated
or altered content include appropriate disclosures, respectively.

Source: The Wall Street Journal, 2024
Figure 6.1.17

Sep. 22, 2024

United Nations adopts Global Digital Compact to ensure
an inclusive and secure digital future

During the Summit of the Future, U.N. member states adopted the
Global Digital Compact, aiming to establish an inclusive, open,
sustainable, fair, safe, and secure digital future for all. The Compact
emphasizes objectives such as closing digital divides, expanding
benefits from the digital economy, fostering a digital space that
respects human rights, advancing equitable data governance, and
enhancing international governance of artificial intelligence. Guided
by principles anchored in international law and human rights,
the Compact seeks to harness digital technologies to accelerate
progress toward the Sustainable Development Goals.

Source: United Nations, 2024
Figure 6.1.18
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https://www.gov.ca.gov/2024/09/17/governor-newsom-signs-bills-to-combat-deepfake-election-content/
https://www.un.org/global-digital-compact/sites/default/files/2024-09/Global%20Digital%20Compact%20-%20English_0.pdf
https://fedscoop.com/white-house-pushes-ai-infrastructure-tech-ceos-meeting/
https://www.wsj.com/tech/ai/new-era-of-ai-deepfakes-complicates-2024-elections-aa529b9e
https://www.un.org/en/summit-of-the-future
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Sep. 29, 2024

California governor vetoes expansive Al legislation

Governor Gavin Newsom vetoed California’s Al safety bill, which

would have set a national precedent for Al regulation, given the
state’s role as home to many leading Al companies. The bill sought
to mandate safety testing for frontier Al models before their public
release and would have allowed the state attorney general to sue
companies over Al-related harm. Supporters argued it was a nec-
essary step to ensure Al safety and accountability, while critics con-
tended it was overly restrictive and could stifle Al development, es-
pecially of the open-weight Al ecosystem. Given California’s status
as the world’s fifth-largest economy, the bill’s impact could have
extended beyond state borders, akin to the Brussels effect, shaping
Al governance nationally and internationally. Newsom defended his
veto, arguing the bill imposed excessive standards.
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Source: Financial Times, 2024
Figure 6.1.19

U.S. judge blocks new California Al law over
Kamala Harris deepfake

A federal judge in California issued a temporary injunction on one

of the state’s new Al laws just two weeks after it was signed. In his
ruling, Judge Mendez cited the law’s vague definition of “harmful”
depictions as a potential threat to constitutionally protected speech.
The law had been used to prosecute an X user after he had posted a
deepfake featuring Kamala Harris.

Source: Los Angeles Times, 2024
Figure 6.1.20

Nov. 8, 2024

Saudi Arabia announces “Project Transcendence”

In November 2024, Saudi Arabia announced Project Transcendence,
a $100 billion Al initiative aimed at establishing the kingdom as a
global tech hub. Spearheaded by the Public Investment Fund, the
project includes a partnership with Alphabet, Google’s parent
company, involving an investment between $5 billion and $10
billion to develop Arabic-language Al models. This initiative aligns
with Saudi Arabia’s Vision 2030, which focuses on diversifying the
region’s economy beyond oil and becoming a meaningful hub of Al.

Source: Telecom Review, 2024
Figure 6.1.21
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Nov. 14, 2024

European Commission Al Office releases first draft of
Code of Practice for General-Purpose Al

The European Al Office issued the first of four drafts for the General-
Purpose Al Code of Practice. This code was developed by four

working groups of independent experts, focusing on transparency
and copyright, risk identification and assessment, risk mitigation,
and internal governance. Once finalized, the code will complement
the Al Act, allowing Al model providers to demonstrate compliance
until a finalized standard is published.

| I Artificial Intelligence
HI Index Report 2025

Source: European Union, 2024
Figure 6.1.22

Nov. 25, 2024

U.S. launches international Al safety network with
global partners

In November 2024, the U.S. Department of Commerce and the
U.S. Department of State cohosted the inaugural meeting of the
International Network of Al Safety Institutes in San Francisco. This
initiative aims to improve global coordination on safe Al innovation,
focusing on managing synthetic content risks, testing foundation
models, and conducting risk assessments for advanced Al systems.
The United States serves as the inaugural chair, with initial members
including Australia, Canada, the European Union, France, Japan,
Kenya, the Republic of Korea, Singapore, and the United Kingdom.
The network has secured over $11 million in global research funding
commitments to support its efforts.

Source: AP, 2024
Figure 6.1.23

Dec. 2, 2024

U.S. increases export controls of semiconductor
manufacturing equipment and software to China

The U.S. Department of Commerce’s Bureau of Industry and Security
further limited China’s ability to produce advanced semiconductors

by announcing new export controls. These measures include
restrictions on 24 types of semiconductor manufacturing
equipment, three types of software tools, and additional limitations.
The secretary of commerce emphasized the importance of these
measures in safeguarding U.S. national security.

Source: CNBC, 2024
Figure 6.1.24
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U.N. Security Council debates uses of Al in conflicts and
calls for global framework

On Dec. 19, 2024, the United Nations Security Council convened to
address the challenges posed by Al in military contexts. Secretary-
General Anténio Guterres emphasized that Al’s rapid evolution is
outpacing current governance frameworks, potentially undermining
human control over weapons systems. He called for “international
- 5 . . . . Source: Berkeley Political Review, 2016
guardrails” to ensure Al’s safe and inclusive use. These discussions Figure 6.1.25
continue amid reports of widespread autonomous drone and robot

use in the ongoing war in Ukraine.
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6.2 Al and Policymaking
Global Legislative Records on Al

Overview

The Al Index analyzed legislation containing the term Al-related laws enacted since 2016. The total number of
“artificial intelligence” in 114 countries from 2016 to 2024. Al-related laws passed rose from 30 in 2023 to 40 in 2024,
Of these, 39 countries have enacted at least one Al-related making 2024 the second-highest year on record after 2022.
law (Figure 6.2.1).2 In total, the countries have passed 204 Since 2016, the number of Al-related laws passed has grown
Al-related laws. Figure 6.2.2 illustrates the annual count of from just one to 40.

Number of Al-related bills passed into law by country, 2016-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.1

1The analysis may undercount the number of actual laws passed, given that large bills that are proposed can include multiple sections related to Al. For example, the National Defense
Authorization Act is introduced as a single omnibus bill but includes a collection of smaller bills that were originally proposed individually and later consolidated into one single comprehensive bill.

2 The Al Index monitored Al-related laws passed in Hong Kong and Macao, despite these not being officially recognized countries. Thus, the Index covers a total of 116 geographic areas.
Laws passed by Hong Kong and Macao were counted in the overall tally of Al-related laws. This year, the Index decreased its country sample compared to previous years, due to issues
accessing the legislative databases of certain nations. As a result, there is a difference between the number of Al-related laws reported this year and those in prior reports.

© Table of Contents 4 Chapter 6 Preview




| HI Artificial Intelligence
Chapter 6: Policy and Governance Index Report 2025

6.2 Al and Policymaking

Number of Al-related bills passed into law in 116 select geographic areas, 2016-24
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.2
By Geographic Area
Figure 6.2.3 highlights the number of Al-related laws enacted each. Figure 6.2.4 displays the total number of Al-related
in 2024 across the top 15 geographic areas. Russia led with laws passed since 2016, with the United States leading at 27,
seven laws, followed by Belgium and Portugal with five followed by Portugal and Russia, each with 20.3

Number of Al-related bills passed into law in select Number of Al-related bills passed into law in select

geographic areas, 2024 geographic areas, 2016—24 (sum)
Source: Al Index, 2025 | Chart: 2025 Al Index report Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.3 Figure 6.2.4

3 For concision, Figure 6.2.3 and Figure 6.2.4 display data for the top 15 geographic areas by count. Complete country-level totals will be available in the summer 2025 update of the Global Al
Vibrancy Tool. For immediate access, please contact the Al Index team.

© Table of Contents 4 Chapter 6 Preview




| I Artificial Intelligence
HI Index Report 2025

Chapter 6: Policy and Governance
6.2 Al and Policymaking

Highlight:
A Closer Look at Global Al Legislation

The following subsection delves into some of the Al-related legislation passed into law during 2024. Figure 6.2.5 samples
five countries’ laws covering a range of Al-related issues.

Country Bill name Description

Austria Federal law amending the This act establishes a Service Center for Artificial Intelligence
KommAustria Act and the to support, advise, and coordinate Al governance in the media,
Telecommunications Act 2021 telecommunications, and postal sectors. It mandates an Al advisory

board to monitor Al developments, advise the government, and

help shape national Al policy. The Service Center must maintain

an information portal on Al projects, particularly publicly funded
ones. It also provides guidance on Al regulation, cybersecurity, and
compliance. To fund these activities, €700,000 is allocated annually,
with future adjustments based on inflation.

Belgium Royal decree establishing an This act creates a federal Al steering committee to advise the
orientation committee on artificial government on Al-related policies and serve as the primary point
intelligence of contact for Al governance. The committee, composed of

representatives from ministries and public institutions, meets regularly
to provide recommendations and coordinate Al policy across Belgium.

France LAW No. 2021-1382 of October This law establishes the Regulatory Authority for Audiovisual and
25, 2021, relating to the regulation Digital Communication (ARCOM) by merging the Higher Audiovisual
and protection of access to cultural Council (CSA) and the High Authority for the Distribution of Works
works in the digital age* and the Protection of Rights on the Internet (HADOPI). It strengthens

measures against online piracy and enhances the regulation of digital
platforms to safeguard access to cultural content in the digital space.
The law also references artificial intelligence as a tool ARCOM can
use to monitor and regulate digital platforms, particularly for detecting
copyright infringements and combating online piracy.

Latvia Amendments to the Pre-election This act regulates the use of Al in political advertising, requiring clear
Campaigning Law disclosure for Al-generated content in paid campaign materials. It also

bans the use of automated systems with fake or anonymous social
media profiles for election campaigns.

Russia On Amendments to the Federal This act establishes a framework for processing and sharing
Law “On Personal Data” and the anonymized personal data to support Al development in government
Federal Law “On Conducting an operations. It regulates Al-driven decision making, sets security
Experiment to Establish Special standards for biometric data, and restricts foreign access to sensitive

Regulations for Creating Necessary | Al-related datasets.
Conditions for the Development
and Implementation of Artificial
Intelligence Technologies in the
Constituent Entity of the Russian
Federation — the Federal City of
Moscow,” and on Amendments to
Articles 6 and 10 of the Federal Law
“On Personal Data”

Figure 6.2.5

4 Law No. 2024-449, passed in 2024, amends Law No. 2021-1382—originally enacted in 2021 and updated in 2024 to include Al—by broadening its scope to cover artificial intelligence and
authorizing ARCOM to utilize Al.
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US Legislative Records

Federal Level

Figure 6.2.6 illustrates the total number of passed versus
proposed Al-related bills in the U.S. Congress and
demonstrates a significantincrease in proposed legislation.® In
the last year, the count of proposed Al-related bills continued
to rise, increasing from 171 in 2023 to 221 in 2024. Since
2022, the number of proposed U.S. federal Al-related bills
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has almost tripled. Still, of all Al-related bills being proposed,
relatively few are passed. The significant increase in U.S.
Al-related legislative activity likely reflects policymakers’
response to the increasing public awareness and capabilities
of Al technologies, particularly generative Al.®

Number of congressional Al-related proposed bills and passed laws in the United States, 2016-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.6

5 A bill is passed when it successfully clears both chambers of Congress: the House and the Senate.

6 This section covers only congressional bills. However, U.S. Al policymaking extends beyond Congress to other bodies, including the Executive Branch—such as President Donald Trump’s

Stargate announcement—and rules coming from regulatory agencies like the FTC.
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State Level

The Al Index also tracks data on the enactment of Al-
related legislation at the state level. Figure 6.2.7 highlights
the number of Al-related laws enacted by U.S. states in
2024. According to the Al Index tracking methodology,
California leads with 22 laws, followed by Utah with 12 and
Maryland with eight. Figure 6.2.8 displays the total amount
of legislation passed by states from 2016 to 2024. California
again tops the ranking with 42 bills, followed by Maryland
(17), Virginia (17), and Utah (17).
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Number of Al-related bills passed into law in select
US states, 2024

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.7

Number of state-level Al-related bills passed into law in the
United States by state, 2016—-24 (sum)

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Since 2016, the number of state-level Al-related laws has rapidly increased. Only one such bill was passed in 2016, rising to 49
by 2023. In the past year alone, that number more than doubled to 131 (Figure 6.2.9).

Number of Al-related bills passed into law by all US states, 2016-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.9
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Highlight:
A Closer Look at State-Level Al Legislation

The following subsection highlights some of the Al-related legislation passed into law at the state level during 2024.
The Index profiles legislation from states like California and New York, major hubs for Al companies, alongside states
like Alabama and Colorado, which play a smaller role in the industry. This approach highlights the diverse concerns
shaping Al legislation at the state level (Figure 6.2.10).

State Bill name Description

Alabama Relating to elections; to provide This bill prohibits the distribution of Al-generated deceptive media
that distribution of materially within 90 days of an election if intended to mislead voters or harm a
deceptive media is a crime candidate, with penalties ranging from a misdemeanor to a felony for

repeat offenses. Exceptions apply for media with clear disclaimers,
news reporting, and satire, while violations can result in misdemeanor
or felony charges, and affected parties may seek legal action.

California California Al Transparency Act This act requires large Al providers to offer free Al detection
tools and ensure Al-generated content includes clear, permanent
disclosures. Violations result in a $5,000 fine per instance, with
enforcement by the attorney general or local authorities.

Colorado Consumer Protections for This bill establishes consumer protections for interactions with
Atrtificial Intelligence’ high-risk Al systems, requiring developers and deployers to prevent

algorithmic discrimination. Al systems must provide transparency,
allow consumers to correct or appeal Al-driven decisions, and
undergo regular impact assessments.

Massachusetts An Act to Provide for the Future This act allocates $1.26 billion to modernize information technology,
Information Technology Needs of | cybersecurity, and broadband infrastructure across Massachusetts.
Massachusetts It includes $25 million to integrate Al and machine learning into

state government operations, enhancing automation, efficiency, and
cybersecurity.

New York An Act to Amend the General This act requires social media companies to publicly disclose
Business Law, in Relation to their terms of service for each platform they own or operate in a
Requiring Disclosure of Certain clear and accessible manner. It also mandates submitting terms of
Social Media Terms of Service service reports to the attorney general and imposes penalties for

noncompliance.

Figure 6.2.10

7 This bill is colloquially known as the “Colorado Al Act.”
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Highlight:
Anti-deepfake Policymaking

States in the U.S. have been particularly active in passing
legislation to combat deepfakes. A deepfake is Al-
generated synthetic media that manipulates or replaces
a person’s likeness in video, audio, or images, often
creating realistic but deceptive content. Deepfakes
can be used to manipulate election outcomes, as
discussed in Chapter 3 of this year’s Al Index, or to
generate explicit images. The nonprofit Public Citizen
maintains a database tracking Al deepfake regulations,
covering both election-related misuse and intimate
image misuse. Figure 6.2.11 illustrates the number of
state-level laws passed in the United States over time,
encompassing anti-deepfake regulations related to
elections and intimate images.? Figure 6.2.12 highlights

when states enacted laws to regulate Al deepfakes
in elections. Before 2024, five states—California,
Washington, Texas, Michigan, and Minnesota—had
passed such laws. In 2024, 12 more states, including
Oregon, New Mexico, and New York, introduced similar
regulations.

State-level regulations against intimate deepfakes
are far more widespread than those against election
misuse. A total of 25 states have enacted laws covering
all individuals, while five states have passed regulations
that apply only to minors (Figure 6.2.13). Wyoming and
Ohio are the only states yet to implement any form of
intimate deepfake regulation.

Number of state-level laws enacted on Al-generated deepfakes in intimate imagery and elections in the

United States, 2019-24

Source: Public Citizen, 2025 | Chart: 2025 Al Index report
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Figure 6.2.11

8 In some cases, the Al Index could not verify the enactment dates of certain state-level Al-related anti-deepfake laws tracked by Public Citizen. Figure 6.2.11 includes only those bills with
confirmed passage dates.
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Highlight:
Anti-deepfake Policymaking (cont’d)

State-level laws regulating Al-generated deepfakes in elections
in the US by state and status as of 2024

Source: Public Citizen, 2025 | Chart: 2025 Al Index report
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Figure 6.2.12

State-level laws regulating Al-generated deepfakes in intimate imagery
in the US by state and status as of 2024

Source: Public Citizen, 2025 | Chart: 2025 Al Index report

AK ME

Eoo

D--EEE- B

“E - EEEE - e
-1

-

B Enacted (covers everyone)

B Enacted (covers minors only)

u Legislation pending (covers everyone)
Legislation pending (covers minors only)
No legislation enacted

Figure 6.2.13

© Table of Contents 4 Chapter 6 Preview




Chapter 6: Policy and Governance
6.2 Al and Policymaking

Global Al Mentions

Another barometer of legislative interest is the number
of mentions of artificial intelligence in governmental and
parliamentary proceedings. The Al Index conducted
an analysis of the minutes or proceedings of legislative
sessions in 73 countries that contain the keyword “artificial
intelligence” from 2016 to 2024.°
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Overview

Figure 6.2.14 shows the total number of legislative sessions
worldwide that have mentioned Al since 2016. In the past
year, Al mentions rose by 21.3%, increasing from 1,557 in
2023 to 1,889. Since 2016, the total number of Al mentions
has grown more than ninefold.

Number of mentions of Al in legislative proceedings in 75 select geographic areas, 2016-24

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.14

9 The full list of analyzed countries is available in the Appendix. The Al Index research team aimed to review governmental and parliamentary proceedings worldwide, but publicly accessible
databases were not available for all countries. This year, the Index slightly adjusted its tracking methodology, resulting in minor differences from previous totals. More specifically, mentions
are counted by session, so multiple mentions of Al in the same legislative session count as one mention. The full methodology is detailed in the Appendix. Additionally, the Al Index tracked
mentions in Macao and Hong Kong. While not officially countries, their mentions were included in the tally presented in Figure 6.2.14. In total, the Index tracked Al mentions across 75
geographic areas.
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In 2024, Spain led in Al mentions within its legislative proceedings (314), followed by Ireland (145) and Australia (123) (Figure
6.2.15). Of the 75 geographic areas analyzed, 57 referenced Al in at least one legislative proceeding in 2024.

Number of mentions of Al in legislative proceedings by country, 2024
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.2.15

When legislative mentions are aggregated from 2016 to 2024, a somewhat similar trend emerges (Figure 6.2.16). Spain is first
with 1,200 mentions, followed by the United Kingdom (710) and Ireland (659).

Number of mentions of Al in legislative proceedings by country, 2016—-24 (sum)
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Drawing on data from select countries, Figure 6.2.17 compares discussion of Al correlates with more Al legislation—although
Al mentions in parliamentary discussions with the number some countries, such as Belgium, Portugal, and Russia,
of Al-related bills passed. In general, greater parliamentary deviate from this trend.

Mentions of Al in legislative proceedings vs. Al-related bills passed into law in select countries, 2016-24
Source: Al Index, 2025 | Table: 2025 Al Index report
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US Committee Mentions

Mentions of artificial intelligence in committee reports by Figure 6.2.18 tracks Al mentions in U.S. committee reports
House and Senate committees serve as another indicator by legislative session from 2001 to 2024. The 118th session
of legislative interest in Al in the United States. Typically, recorded the highest count to date, with 136 mentions—up
these committees focus on legislative and policy issues, 83.8% from the 117th session.

investigations, and internal matters.

Mentions of Al in US committee reports by legislative session, 2001-24
Source: Al Index, 2025 | Chart: 2025 Al Index report
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US Regulations

The advent of Al has garnered significant attention from
regulatory agencies—federal bodies tasked with regulating
sectors of the economy and steering the enforcement of
laws. This section examines Al regulations within the United
States. Unlike legislation, which establishes legal frameworks
within nations, regulations are detailed directives crafted
by executive authorities to enforce legislation. In the
United States, prominent regulatory agencies include
the Environmental Protection Agency (EPA), Food and
Drug Administration (FDA), and Federal Communications
Commission (FCC). Since the specifics of legislation often
manifest through regulatory actions, understanding the Al
regulatory landscape is essential to developing a deeper
understanding of Al policymaking.
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This section examines Al-related regulations enacted by
American regulatory agencies between 2016 and 2024. It
provides an analysis of the total number of regulations, as
well as their topics, scope, regulatory intent, and originating
agencies. To compile this data, the Al Index performed a
keyword search for “artificial intelligence” on the Federal

Register, a comprehensive repository of government
documents from nearly all branches of the American
government, encompassing more than 436 agencies.

Overview

The number of Al-related regulations has risen sharply over
the past six years, with a particularly noticeable increase in
the last year (Figure 6.2.19). In 2024, 59 Al-related regulations
were introduced—more than double the 25 recorded in 2023.

Number of Al-related regulations in the United States, 2016-24

Source: Al Index, 2025 | Chart: 2025 Al Index report

60

50

D
o

Number of Al-related regulations
N o
o o

10

59

2016 2017 2018 2019

By Agency

Figure 6.2.20 looks at the number of Al-related regulations
in the United States that have been released by different
American regulatory agencies since 2016.° In 2024, the
Department of Health and Human Services issued the most
Al-related regulations (14), followed by the Centers for

2020 2021 2022 2023 2024

Figure 6.2.19

Medicare and Medicaid Services (7) and the Commerce
Department (7). Al regulations came from a record 42 unique
departments, up from 21 in 2023 and 17 in 2022. This trend
reflects a growing interest in Al across a wider range of U.S.
regulators.

10 Regulations can originate from multiple agencies, so the totals in Figure 6.2.20 do not fully align with those in Figure 6.2.19. Figure 6.2.20 refers to departments as agencies, consistent with

the terminology used by the Federal Register, the source of the data.
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Number of Al-related regulations in the United States by agency, 2016-24

Source: Al Index, 2025 | Chart: 2025 Al Index report

2016 2017 2018 2019 2020 2021 2022 2023 2024
Agency for International Development
Census Bureau 1
Centers for Medicare and Medicaid Services 1 2 4 5 4 3
Children and Families Administration 1 1 1
Commerce Departmeant 1 1 3 5
Commeodity Futures Trading Commission
Comptroller of the Currency 1
Consumer Financial Protection Bureau 1 1 1
Copyright Office, Library of Congress 1 1

Defense Acquisition Regulations System
Defense Department
Education Department 2
Employee Benefits Security Administration 1
Employment and Training Administration 1
Energy Department 1

Environmental Protection Agency
Executive Office for Immigration Review

Executive Office of the President 2 6 5 2 3 5
Federal Aviation Administration
Federal Communications Commission 1

Federal Deposit Insurance Corporation

Federal Election Commission

Federal Energy Regulatory Commission

Federal Housing Finance Agency
Federal Railroad Administration 1

Federal Reserve System

Federal Trade Commission

Agency

Financial Crimes Enforcement Network
Food and Drug Administration 3] 1 2
Health and Human Services Department 1 4 E-] 5 5
Homeland Security Department 1 3
Housing and Urban Development Department 1
Industry and Security Bureau 3
Investment Security Office 1
Justice Department
Labor Department 7] 1 1
Library of Congress 1 1
National Credit Union Administration 1
National Highway Traffic Safety Administration
National Oceanic and Atmospheric Administration
National Science Foundation 1
Nuclear Regulatory Commission 1
Occupational Safety and Health Administration 1
Office of the Inspector General 2 1 1
Office of the Secretary 1 3 1 1 6
Patent and Trademark Office 1
Personnel Management Office
Public Health Service 1 1
Securities and Exchange Commission 1 2
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A Closer Look at US Federal Regulations

The following section highlights some of the Al-related regulations passed as rules and executive orders at the federal
level during 2024 (Figure 6.2.21).

Agency

Executive Office of
the President

Regulation

Preventing Access to Americans’
Bulk Sensitive Personal Data

and United States Government—
Related Data by Countries of
Concern

Description

This executive order identifies Al use by countries of concern as a
significant national security threat. It specifically warns of foreign
adversaries exploiting bulk sensitive personal and U.S. government—
related data to refine Al algorithms for espionage, cyber

operations, and influencing campaigns. To counter this risk, the
order implements measures to safeguard sensitive data, including
restrictions or bans on data transactions with these countries and
strengthened network infrastructure security.

Industry and
Security Bureau

Foreign-Produced Direct Product

Rule Additions, and Refinements
to Control for Advanced
Computing and Semiconductor
Manufacturing Items

This rule amends the U.S. Export Administration Regulations to
tighten controls on semiconductor manufacturing equipment and
supercomputer exports, particularly to China. It introduces additional
restrictions on semiconductor production, revises existing measures,
and implements “Red Flags” to identify risks of unauthorized exports.
These changes aim to counter China’s efforts to circumvent previous
restrictions and limit its ability to develop advanced computing and
Al systems that could threaten U.S. national security.

Consumer Financial
Protection Bureau

Consumer Financial Protection
Circular 2024-06: Background
Dossiers and Algorithmic Scores
for Hiring, Promotion, and Other
Employment Decisions

This rule mandates that employers cannot base employment
decisions on background dossiers, algorithmic scores, or third-party
reports without complying with the Fair Credit Reporting Act. It
reinforces key obligations, particularly for Al-driven systems, such as
obtaining a worker’s consent before procuring a consumer report. By
doing so, the rule sets clear limits on the use of algorithmic scoring in
hiring and employment decisions.

Federal Election
Commission

Fraudulent Misrepresentation of
Campaign Authority

This interpretive rule offers supplemental guidance on the Federal
Election Campaign Act (FECA) in response to the rise of Al-
generated content. It reaffirms that FECA is “technology neutral” and
focuses on whether a person or entity engages in election-related
misrepresentation rather than specifically addressing Al misuse.

Office of
Investment Security,
Department of the
Treasury

Provisions Pertaining to U.S.
Investments in Certain National
Security Technologies and
Products in Countries of Concern

This final rule implements Executive Order 14105, mandating that
U.S. persons notify the Treasury Department of transactions with
entities in countries of concern involved in sensitive technologies
that threaten national security. It also prohibits certain transactions
with these entities. Issued in 2023, the order targets U.S. investments
in high-risk technologies, including Al, semiconductors, and
quantum computing, recognizing them as critical sectors where such
investments could heighten security threats from adversarial nations.
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https://www.federalregister.gov/documents/2024/11/12/2024-26099/consumer-financial-protection-circular-2024-06-background-dossiers-and-algorithmic-scores-for-hiring
https://www.federalregister.gov/documents/2024/11/12/2024-26099/consumer-financial-protection-circular-2024-06-background-dossiers-and-algorithmic-scores-for-hiring
https://www.federalregister.gov/documents/2024/11/12/2024-26099/consumer-financial-protection-circular-2024-06-background-dossiers-and-algorithmic-scores-for-hiring
https://www.federalregister.gov/documents/2024/11/12/2024-26099/consumer-financial-protection-circular-2024-06-background-dossiers-and-algorithmic-scores-for-hiring
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As Al continues to drive innovation in critical sectors such as
healthcare, transportation, and defense, public funding has
become essential for nations to realize their Al strategies.
Understanding how much governments invest in Al research
and development (R&D) is important for understanding
the broader Al geopolitical landscape, yet tracking these
investments presents significant challenges. While national
budgets may outline Al-related spending, these allocations
do not always translate directly into expenditures. Moreover,
Al investments are often embedded within broader
scientific or technological initiatives. As a result, pinpointing
Al-specific funding can be difficult.

To address this, the Al Index leveraged natural language
processing (NLP) techniques to analyze public tenders and
contracts and to identify Al-related government spending in
countries across the world.”? Examining tenders provides a
more direct measure of investment trends and offers insight
into how governments allocate resources over time. Because
the Al Index only analyzed countries for which public contract
and tenders data was publicly available, some countries
could not be analyzed.”® This section also presents an analysis
of total Al grant spending in the United States.

11 The analysis in this section was led by Lapo Santarlasci.

The Al Index cautions against making direct country-to-
country comparisons based on the public spending data
presented in this section. While this analysis includes
data on government contracts from a range of countries,
it only covers grant-level spending for the United States.
This asymmetry stems from the complexity and difficulty
of collecting comparable grant data from other countries
and regions, such as the European Union and China.
However, as the U.S. case demonstrates, a significant share
of government spending on Al occurs through grants. In
2023 alone, the Al Index estimates that the U.S. government
awarded approximately $830 million in Al-related public
tenders, compared to $4.5 billion in Al-related grants. Given
the current limitations in cross-national data availability and
consistency, comparative analysis of public Al spending
across countries remains premature. This analysis is
intended as an initial step toward more comprehensive
global coverage. The Al Index is committed to expanding
this work and welcomes collaboration from researchers,
institutions, and governments interested in improving the

scope and quality of this data.

12 The full methodology behind this analytical approach is detailed in the Appendix. Due to reporting lags that may result in incomplete data for 2024, the most up-to-date analysis is available

for the end of 2023.

13 Some major government Al contract-granting regions, such as the EU (at the aggregate level) and China, were excluded from this analysis due to data limitations. The Al Index is committed

to expanding its scope to include these and other regions in future editions.
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Total Al Public Investments

Figure 6.3.1 summarizes key figures on the number of Al- contracts (Figure 6.3.1 and Figure 6.3.2). In Europe, the
related contracts and their value at the country level.* From United Kingdom, Germany, and France stand out with the
2013 to 2023, the United States was the leading nation, highest total contract values awarded, accounting for 56% of
with about $5.2 billion distributed across 2,678 unique Al European public investments in Al.

Public spending on Al-related contracts in select countries, 2013—-23 (sum)

Source: Al Index, 2025 | Chart: 2025 Al Index report

United States 5,233.10

United Kingdom 568.48
Germany 278.07
France 190.10
Spain [l 99.71
Belgium [l 83.54
Denmark |l 74.40
Finland [ 71.25
Poland | 55.92
Greece [ 50.02
Romania [§§ 46.37
Italy Jll 44.30
Czech Republic |§f 40.71
Hungary j§ 36.56

Ireland [§ 29.42

] 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
Public spending on Al-related contracts (in millions of US dollars)

Figure 6.3.1

14 The results and figures presented are subject to missing values ratios of the specific sample of matched tenders: 0.16% for NAICS code, and 26.8% for U.S. dollar values. It is important to
note that the sample does not include Northern Ireland tenders, as their offices do not offer an API service or bulk download option for large-scale data collection.
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Number of Al-related contracts in select countries, 2013—-23 (sum)

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Median value of public Al-related contracts in select countries, 2013-23
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Which governments spent the most on Al per capita over the past decade? The United States leads with $1.58 million per 100,000
inhabitants, followed by Finland ($1.3 million) and Denmark ($1.3 million) (Figure 6.3.4).

Public spending on Al-related contracts per 100,000 inhabitants in select countries, 2013-23 (sum)
Source: Al Index, 2025 | Chart: 2025 Al Index report

United States 1.58
Finland 1.29
Denmark 1.27
United Kingdom 0.84
Belgium 0.72
Luxembourg 0.60
Ireland 0.56
Greece 0.48
Norway 0.47
Czech Republic 0.38
Hungary 0.38
Lithuania 0.38
Germany 0.33
Slovenia 0.33

Austria 0.32

0.00 0.30 0.60 0.90 1.20 1.50
Public spending on Al-related contracts per 100,000 inhabitants (in millions of US dollars)

Figure 6.3.4
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Figure 6.3.5 illustrates public investment in Al in 2023. The ranked lower—such as Romania, Greece, Hungary, and
U.S. led with $831.0 million, followed by the United Kingdom at Poland—broke into the top 10. This shift suggests a more
$262.6 million. While Germany, Spain, and the U.K. remained balanced distribution of Al-related funding across Europe.

among Europe’s top investors, countries that historically

Public spending on Al-related contracts in select countries, 2023
Source: Al Index, 2025 | Chart: 2025 Al Index report

United States 830.98
United Kingdom
Spain

Germany
Greece
Romania

Ireland

Poland

France

Hungary

Italy

Austria

Belgium

Czech Republic

Sweden

(o] 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Public spending on Al-related contracts (in millions of US dollars)

Figure 6.3.5
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Figure 6.3.6 illustrates the trends in public Al investment
over time across two significant regions of Al investment, the
United States and Europe. Both regions have seen substantial
growth in Al-related spending over the past decade. Notably,
Europe’s total Al investment in 2023 was approximately 67
times higher than in 2013, compared to a fifteenfold increase
in the United States. Europe experienced particularly sharp
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increases in investment, with a 400% year-over-year increase
in 2017, followed by another major spike of 200% year-over-
year in 2019—a year that also saw a peak in the number of
national Al strategies released globally. This sustained upward
trend illustrates how government interest and commitment
to Al is growing in monetary terms.

Public spending on Al-related contracts in the United States and Europe, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.3.7 charts the investment gap between Europe and indicating that European nations are closing the gap in total
the U.S. over time. The disparity in Al investment widened Al-related public spending.
until 2020 but has narrowed over the past three years,

Difference in public spending on Al-related contracts between the United States and Europe, 2013-23
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Figure 6.3.7
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Figure 6.3.8 documents public investment trends from 2013
to 2023 across the top five European countries—Belgium,
France, Germany, Spain, and the U.K. The data reveals a
steady increase in investment, marked by periodic peaks.
Germany experienced substantial growth, particularly in
2019, following the launch of its national Al strategy in
November 2018. The U.K. saw sharp increases in Al-related
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public investment in both 2021 and 2023. These investments
followed the proposition of a national Al strategy by the Al
Council—an independent expert committee established
in 2019 to advise the government and provide high-level
leadership of the Al ecosystem. Meanwhile, Belgium, France,
and Spain exhibited more modest but consistent growth.

Public spending on Al-related contracts in top 5 European countries, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Spending Across Agencies and Sectors

The distribution of public tender investments in Al reflects
stark contrasts between the U.S. and Europe, driven by
differing strategic priorities and institutional structures. As
shown in Figure 6.3.9, the U.S. has allocated the majority of Al
contracts since 2013 to the Department of Defense. This fact
is unsurprising given the central role the American defense
sector has played in American technological innovation. In
2023, the Department of Defense (75.0%) was followed by the

Department of Veterans Affairs (6.8%) and the Department of
the Treasury (5.3%).

While the Department of Veterans Affairs may seem like an
outlier, it has made significant investments in recent years—
in areas that include the use of Al for diagnosis, robotic
prostheses, and mental health.

Public spending on Al-related contracts (% of total) in the United States by funding agency, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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In Europe, Al investment through public tenders follows
a markedly different pattern. Given the lack of aggregated
data comparable to that of the U.S., the Al Index categorized
European funding entities by their central activity. As shown
in Figure 6.3.10, there is a more balanced distribution of
investments in Europe. The top funding areas—general
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public services, education, and health—collectively account
for around 84% of total public Al investments in 2023. In the
same year, defense accounted for only 0.84% of all European
Al-related public tenders. This stands in stark contrast to the
U.S., where defense overwhelmingly dominates Al funding.

Public spending on Al-related contracts (% of total) in Europe by funding agency activity, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Highlight:
Al Grant Spending in the US

Public grants also represent a key avenue through which
governments allocate resources to Al-related projects
and initiatives. Public institutions can directly invest in
Al-related projects such as enhancing X-ray angiography

interpretation, building Al-driven unmanned aircraft
systems for automated soil monitoring, or developing tools
for interpretable machine learning. Research grants can
be disbursed to organizations like the National Science
Foundation or the Department of Health and Human
Services (which includes NIH) to conduct Al-focused
research. In this section, the Al Index examined data on
grants in the U.S. allocated to Al-specific endeavors.
As in the previous section, the Al Index employed NLP

methodologies to identify Al-related grants.”

Figure 6.3.11 displays aggregate data on Al-related grant
spending in the U.S. from 2013 to 2023. In that period, a
total of roughly $19.7 billion was allocated by the U.S.
government for Al-related grants.

US Al-related grants, 2013-23

Source: Al Index, 2025 | Table: 2025 Al Index report

ommiis e |

Number of grants 18,399
Total (in millions $) 19,748.44
Median (in thousands $) 247.53
Average (in thousands $) 1,073.34
Total per 100,000 inhabitants (in thousands $) 5,967.69
Figure 6.3.11

Figure 6.3.12 illustrates the steady rise in Al-related grant
funding over time. Between 2013 and 2023, total Al grant
funding in the U.S. grew nearly nineteenfold, from $230
million to $4.5 billion. From 2014 to 2020, investments saw
an average annual growth rate of 40%. This rapid expansion
coincided with major advancements in Al technologies—
such as deep learning, natural language processing, and
computer vision—which likely fueled demand for public-
sector Al applications and drove increased funding for
related projects.

Public spending on Al-related grants in the United States, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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Highlight:

Al Grant Spending in the US (cont’d)

the Department of Health and Human Services (43.6%),

Figure 6.313 illustrates the distribution of Al contract
followed by the National Science Foundation (27.9%) and

values by funding agencies in the U.S. from 2013 to 2023.
The greatest share of Al-related grants was allocated to the Department of Commerce (5.4%).

Public spending on Al-related grants (% of total) by funding agency, 2013-23

Source: Al Index, 2025 | Chart: 2025 Al Index report
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CHAPTER 7:
Education

Overview

Al has entered the public consciousness through generative Al’s impact on work—
enhancing efficiency and automating tasks—but it has also driven innovation in
education and personalized learning. Still, while Al promises benefits, it also poses
risks—from hallucinating false outputs to reinforcing biases and diminishing critical
thinking. With the Al education market expected to grow substantially, ethical concerns
about the technology’s misuse—Al tools have already falsely accused marginalized
students of cheating—are mounting, highlighting the need for responsible creation
and deployment.

Addressing these challenges requires both technical literacy and critical engagement
with Al’s societal impact. Expanding Al expertise must begin in K-12 and higher
education in order to ensure that students are prepared to be responsible users and
developers. Al education cannot exist in isolation—it must align with broader computer
science (CS) education efforts. This chapter examines the global state of Al and CS
education, access disparities, and policies shaping Al’s role in learning.

This chapter was a collaboration prepared by the Kapor Foundation, CSTA, PIT-UN
and the Al Index. The Kapor Foundation works at the intersection of racial equity and

technology to build equitable and inclusive computing education pathways, advance
tech policies that mitigate harms and promote equitable opportunity, and deploy
capital to support responsible, ethical, and equitable tech solutions. The CSTA is a
global membership organization that unites, supports, and empowers educators to
enhance the quality, accessibility, and inclusivity of computer science education. The
Public Interest Technology University Network (PIT-UN) fosters collaboration between
universities and colleges to build the PIT field and nurture a new generation of civic-
minded technologists.
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CHAPTER 7:
Education

Chapter Highlights

1. Access to and enrollment in high school CS courses in the U.S. has increased slightly from the previous
school year, but gaps remain. Student participation varies by state, race/ethnicity, school size, geography, income,
gender, and disability.

2. CS teachers in the U.S. want to teach Al but do not feel equipped to do so. Despite 81% of CS teachers
agreeing that using Al and learning about Al should be included in a foundational CS learning experience, less than half of high
school CS teachers felt equipped to teach Al.

3. Two-thirds of countries worldwide offer or plan to offer K-12 CS education. This fraction has doubled since
2019, with African and Latin American countries progressing the most. However, students in African countries have the least
access to CS education due to schools’ lack of electricity.

4. Graduates who earned their master’s degree in Al in the U.S. nearly doubled between 2022 and 2023.
While increased attention on Al will be slower to emerge in the number of bachelor’s and PhD degrees, the surge in master’s
degrees could indicate a future trend for all degree levels.

5. The U.S. continues to be a global leader in producing information, technology, and communications
(ICT) graduates at all levels. Spain, Brazil, and the United Kingdom follow the U.S. as the top producers at various levels,
while Turkey boasts the best gender parity.
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7.1 Background

7.1 Background

To expand our understanding of the current state of Al risks of using it. Al education encompasses Al literacy plus
education, it is imperative to differentiate between Al in students’ proficiency in the technical skills required to build
education, Al literacy, and Al education (see Figure 7.1.1). Al (data analyses undergirding Al technologies, identifying
Al in education is the usage of Al tools in the teaching and and mitigating data biases, etc.). For the purposes of this
learning process while Al literacy refers to the foundational chapter, the data presented covers Al education.

understanding of Al—how it works, how to use it, and the

Figure 7.1.1
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7.2 K-12 CS and Al Education

The world faces significant challenges
in developing a robust and diverse
workforce  when  disparities  in
infrastructure, access to resources and
courses, and participation in high quality
coursework continue to exacerbate
vast inequities in K12 students’ ability
to contribute to a technology-enabled
future. While it is difficult to accurately
estimate the extent of the problem due
to the unstandardized nature of data
collection and metrics development,
this section focuses on the earliest
stage in the computing pipeline by
examining the current status of K-12
CS and Al education with existing
global data.

Foundational Computer Science
In the past decade, educational
advocates have implored policymakers
to adopt legislation to improve access
to CS education. These efforts have
paid off. In the 2017-18 academic year,
35% of U.S. high schools offered CS,
which increased to 60% of U.S. high
schools in 2023—-24. However, national
trends can obscure the reality that
prioritization of CS education varies
by state. For example, 100% of high
schools in Arkansas and Maryland offer
CS, compared to only 31% in Montana
(Figure 7.2.1).
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7.2 K—12 CS and Al Education’
United States

To begin exploring the prevalence and quality of Al education within the United
States, it is important to start with the CS education landscape in its earliest stages
almost a decade ago. With the launch of President Barack Obama’s “Computer

Science for All” initiative in 2016, billions in investments were provided to ensure that
all K—12 students learn CS to become creators in the digital economy and responsible
citizens of a technology-driven society. The federal funding was dedicated to
enhancing professional learning efforts, improving instructional resources, and
building effective regional partnerships toward expanding CS education access. The
National Science Foundation also led the development and implementation of two
new computing courses (Exploring Computer Science and AP Computer Science
Principles) aimed at engaging a broader group of students in computing. At the same
time, the technology industry and philanthropy invested millions in national efforts to
introduce millions of students across the country to CS.

Public high schools teaching foundational CS (% of total in state),

2024
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
ME
63%
VT NH MA
72% 95% 83%
MT MN Mi CT RI
31% 36% 54% 84% 83%
OR WY 1A IL IN OH PA NJ
60% 74% 84% 60% 1% 61% 75% 86%
NV uT CO KS MO KY W\ DC MD DE
95% 81% 59% 35% 58% 76% 78% 535% 1 100% f 61%
AZ NM OK AR TN VA NC
43% 54% 64% § 100% § 61% 68% 69%
TX LA MS AL GA SC
56% 39% 85% 94% 78% 92%
HI FL
72% 38%

Figure 7.21

1Since Al has historically been studied under CS, this chapter references CS education data when Al-specific data is unavailable.
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7.2 K-12 CS and Al Education

Significant gaps remain in equitable access to CS education, lunch (FRL); those in small schools; students living in urban
with some student groups left behind. In the 2023-24 and rural areas; and Native students were less likely to have
academic year, students eligible for free or reduced-price access to CS education (Figures 7.2.2, 7.2.3, 7.2.4, and 7.2.5).
Schools offering foundational CS courses by size, Schools offering foundational CS courses by
2024 geographic area, 2024
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
100% 100%
9118%
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Figure 7.2.2 Figure 7.2.3

Schools offering foundational CS courses by free and

reduced lunch student population, 2024
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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Figure 7.2.4
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Access to foundational CS courses by race/ethnicity, 2024

Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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Figure 7.2.5
Data about participation in CS Public high school enroliment in CS (% of students), 2024
. . . Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
across 41 states indicates lags in
student engagement with courses.
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Chapter 7: Education
7.2 K-12 CS and Al Education

An analysis of CS enrollment by race and ethnicity shows underrepresented relative to their share of the K—12 population.
that efforts to expand access have resulted in near or above Additionally, Hispanic and Native Hawaiian/Pacific Islander
proportional representation for Black, Native American/ students, students with individualized education programs
Alaskan, and white students at the national level (Figure (IEPs), those eligible for free or reduced-price lunch, and
7.2.7). However, data gaps—particularly from nine states— English language learners remain underrepresented nationally
warrant caution in viewing these trends as complete. Girls are (Figure 7.2.7 and Figure 7.2.8).

Public high school enroliment in CS vs. national demographics by race/ethnicity, 2024
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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Figure 7.2.7
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Public high school enroliment in CS vs. national demographics by subgroup, 2024

Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report

Economically disadvantaged

English language learners

Girls

Students with 504 plans

Students with IEPs

©®0.72
©0.64
©0.65
0133

©0.67
|

0.00 0.50

1.00 1.50

Ratio of enrollment in CS to national demographics

Advanced Computer Science

In order to build students’ Al competencies, it is essential
to offer access to advanced coursework in addition to
foundational courses. While Al is not specifically covered in
Advanced Placement (AP) CS A, AP CS Principles (AP CS
P) does address some Al content areas. Because AP CS P

was designed to attract a broader class of students, the

potential exists to expose a diverse student population to Al
topics. Yet, despite the growth in raw numbers of students

Figure 7.2.82

participating in the AP CS exam (Figure 7.2.9), students
do not participate in proportion to their racial and ethnic
representation in the general student body (Figure 7.2.10
and Figure 7.2.11). Asian students, white boys, and multiracial
students are overrepresented in the population of students
who take AP CS exams, while all other student groups are
underrepresented (Figure 7.2.12).

2 A student with a 504 plan receives accommodations under Section 504 of the Rehabilitation Act of 1973, a U.S. civil rights law that prohibits discrimination against individuals with
disabilities. A student with an IEP (individualized education program) receives special education services under the Individuals with Disabilities Education Act. An IEP is a legally binding
document that outlines a learning plan for a student with a disability designed to meet their unique needs and improve educational outcomes.
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7.2 K-12 CS and Al Education

Number of AP computer science exams taken, 2007-23
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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Figure 7.2.9

AP computer science exams taken by race/ethnicity, 2007-23
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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7.2 K-12 CS and Al Education

AP computer science exams taken (% of total responding students) by race/ethnicity, 2007-23
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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Figure 7.2.11
AP computer science exam participation vs. national demographics by race/ethnicity, 2023
Source: Code.org, CSTA, and ECEP Alliance, 2024 | Chart: 2025 Al Index report
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Education Standards and Guidance

Federal guidance issued thus far has focused on Al in
education rather than Al education. The U.S. Department
of Education’s Office of Educational Technology released a
series of reports about Al in education in 2023 and 2024. One
of the reports focuses on recommendations for educational
technology developers, and two of them are intended for
educators, educational leaders, and policymakers. The most
recent report, from October 2024, offers guidance on the
safe and effective implementation of Al in K-12 schools.

As of January 2025, 26 states have issued guidance on Al in
education. And while there is considerable overlap between
CS and Al education content and what teachers currently
cover in the classroom, K-12 CS standards contain minimal
Al content. The Computer Science Teachers Association
(CSTA) K-12 standards, last published in 2017, contain

| I Artificial Intelligence
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only two standards at the advanced high school level that
specifically require Al knowledge. However, existing CS
standards support foundational Al knowledge and skills,
covering topics such as perception, data structures, and
algorithms. The U.S. state-adopted K-12 CS standards
averaged 97% coverage of the same subconcepts as the
CSTA standards, indicating strong national coherence in CS
instruction. Among the 44 states that have adopted K-12 CS
standards, 33 have Al-specific standards, which are generally
minimal, aligned to the CSTA standards, and focused on high
school grades (Figure 7.2.13).3 Four of these states recently
adopted more significant Al-specific standards that span
grades K—12: Colorado (2024), Florida (2024), Ohio (2022),
and Virginia (2024), while Arkansas has defined standards for

a high school Al and machine learning course.

Adoption of Al-specific K-12 computer science standards by US state

Source: CSTA and IACE, 2024 | Chart: 2025 Al Index report
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Figure 7.2.13

3 This project is supported by the National Science Foundation (NSF) under Grant No. 2311746. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the NSF.
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Teacher Perspectives Percentage of teachers who feel equipped to teach Al
by grade level

To examine the perspectives and practices of CS teachers ;
Source: Computer Science Teacher Landscape Survey, 2024 | Chart: 2025 Al Index report

as it relates to Al education, the Computer Science Teacher
Landscape Survey collected data from 2,901 pre-K through 50%
. 46%
12 CS teachers nationally (33% of respondents were 44%
elementary school teachers, 36% taught middle school, and a0
51% taught high school).*$ 0
34%
As Al education gains importance for future workforce % 30%
©
readiness, it is important to understand the preparedness of :g
the current educator workforce. While 81% of CS teachers S 20%
believe Al should be included in foundational CS education,
less than half feel equipped to teach it—46% in high school,
44% in middle school, and just 34% in elementary school 10%
(Figure 7.2.14).
. . . . 0%
When asked to identify the CS-related topics they cover in Elementary school Middle school High school
. . . Fi 7.214
class, over two-thirds of middle and high school CS teachers oure
stated they cover Al specifically, despite the lack of explicit of CS teachers said they include components of Al, such as
definition in CS standards; fewer elementary teachers (65%) algorithms, computing systems, computational thinking, and
reported covering Al (Figure 7.2.15). Greater proportions programming.
Al concepts taught in CS classrooms by grade level
Source: Computer Science Teacher Landscape Survey, 2024 | Chart: 2025 Al Index report
B Elementary school Middle school M High school
100% 96% 96%
92% . .
84% 85% - 8% e
° 82%
80% P
709 74%
65%
3 60% 56%
8 51%
]
k)
® 20%
20%
0%
Algorithms Artificial Intelligence Computing systems  Computational Data and analysis  Impacts and ethics Programming
(Al) (e.g., hardware/ thinking of computing
software) X
Figure 7.2.15
Concept

4 This project is supported by the National Science Foundation (NSF) under Grant No. 2118453. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the NSF. Survey responses may not total 100%, as some questions allowed respondents to select multiple options.

5 The percentages in the figure do not sum to 100% because respondents could select multiple options if they taught more than one grade level.
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Of the 2,245 teachers who did spend class time on Al content, the majority spent fewer than five hours per course. Elementary

school teachers spent the least amount of time, with 70% spending only one to two hours (Figure 7.2.16).

Time spent learning Al in CS classrooms by grade level

Source: Computer Science Teacher Landscape Survey, 2024 | Chart: 2025 Al Index report

B Elementary school Middle school M High school

100%

80%
70%

60%
42%
40% 35%
229
) I
0%

% of teachers

17%
%

6 6%

e e [

1-2 hours 3-5 hours

When asked to name the greatest benefits of using Al in
the classroom, teachers most commonly said improving
their productivity, differentiating student learning, providing
improved academic support to students, and preparing
students for the future. When asked about the greatest risks,
teachers’ greatest concerns were the misuse of Al (often
related to academic integrity); that Al use could limit student
learning or engagement; overreliance on the technology; that
Al could generate misinformation and replicate biases; and
other ethical concerns, including student privacy.
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6-19 hours 20+ hours

Time
Figure 7.2.16

To equip students to use Al responsibly, the educator
workforce must be upskilled. In a 2024 survey of 364 CS
teachers, 88% identified the need for more resources for Al-
related professional development. When asked to identify
specific resources, CS teachers said they needed to gain
more Al literacy (e.g., how Al works, how to use Al, and the
ethical impacts of Al).



https://www.teachai.org/media/ai-in-cs-classroom
https://www.teachai.org/media/ai-in-cs-classroom
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Global

Thus far, very few countries (e.g., Ghana, South Korea,
Netherlands) include Al education in their curricula
explicitly; countries more often flag the importance of Al
education in the national education strategy conversation
without providing a detailed implementation plan. Because
Al education has historically been subsumed under CS
or information and communications technology (ICT)
education, tracking CS and/or ICT education will serve as a
proxy for tracking Al education in this analysis. Similar to the
challenges inherent in tracking CS education in the United
States, caution is called for when interpreting global metrics
because CS and ICT education are sometimes conflated
with digital or computer literacy.®

Availability of CS education by country, 2024
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Access

In 2024, approximately two-thirds of the world’s countries
offered or planned to offer CS education (Figure 7.2.17).
CS education is mandatory in primary and/or secondary
schools in 30% of countries, with Europe home to the highest
concentration of these countries. In the past five years,
all geographic regions have made progress in offering CS
education, with Africa and Latin America registering the largest
increases (Figure 7.2.18). Still, students in African countries are
the least likely to have access to CS education. This is likely
due to infrastructure challenges; in 2023, only 34% of primary
schools in sub-Saharan Africa had access to electricity,
hindering schools’ ability to teach students computer literacy
skills, let alone providing them with CS and Al education.

Source: Raspberry Pi Computing Education Research Centre, 2024 | Chart: 2025 Al Index report

B CS mandatory in primary and secondary
CS mandatory in primary or secondary only
CS as an elective course everywhere
B CSinsome schools/districts @
M CScross curricular
CS planned
No CS

Figure 7.2.17

6 Digital literacy is the “ability to use information and communication technologies to find, evaluate, create, and communicate information, requiring both cognitive and technical skills,”
whereas computer literacy is the “general use of computers and programs, such as productivity software.”
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https://databrowser.uis.unesco.org/view#indicatorPaths=UIS-SDG4Monitoring%3A0%3ASCHBSP.1.WELEC&geoMode=regions&geoUnits=SDG%3A+Central+and+Southern+Asia%2CSDG%3A+Eastern+and+South-Eastern+Asia%2CSDG%3A+Europe+and+Northern+America%2CSDG%3A+Northern+Africa+and+Western+Asia%2CSDG%3A+South-Eastern+Asia%2CSDG%3A+Sub-Saharan+Africa%2CSDG%3A+World%2CSDG%3A+Oceania&years=2010%2C2023&browsePath=EDUCATION%2FUIS-SDG4Monitoring%2Ft4.a&timeMode=range&view=bar&chartMode=single&tableIndicatorId=SCHBSP.1.WELEC&chartHighlightSeries=SDG%3A+World%2CSDG%3A+Sub-Saharan+Africa&chartHighlightEnabled=true
https://databrowser.uis.unesco.org/view#indicatorPaths=UIS-SDG4Monitoring%3A0%3ASCHBSP.1.WELEC&geoMode=regions&geoUnits=SDG%3A+Central+and+Southern+Asia%2CSDG%3A+Eastern+and+South-Eastern+Asia%2CSDG%3A+Europe+and+Northern+America%2CSDG%3A+Northern+Africa+and+Western+Asia%2CSDG%3A+South-Eastern+Asia%2CSDG%3A+Sub-Saharan+Africa%2CSDG%3A+World%2CSDG%3A+Oceania&years=2010%2C2023&browsePath=EDUCATION%2FUIS-SDG4Monitoring%2Ft4.a&timeMode=range&view=bar&chartMode=single&tableIndicatorId=SCHBSP.1.WELEC&chartHighlightSeries=SDG%3A+World%2CSDG%3A+Sub-Saharan+Africa&chartHighlightEnabled=true
https://literacy.ala.org/digital-literacy/
https://k12cs.org/wp-content/uploads/2016/09/K–12-Computer-Science-Framework.pdf
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Globally, the lack of standardized data collection makes it challenging to track progress in Al education. Language barriers and

infrequent updates on implementation further complicate accurate monitoring across countries.

Change in access to CS education by continent, 2019 vs. 2024

Source: Raspberry Pi Computing Education Research Centre, 2024 | Chart: 2025 Al Index report

Africa 9.40% @ 49.05% (+39.65 pp)
Asia 24.50% ® 57.89% (+33.39 pp)
€
o]
£
€
<)
(&)
Europe 63.49% @ 88.88% (+25.39 pp)
® 2019
2024
LAC 29.54% @ 70.45% (+40.91 pp)
0% 20% 40% 60% 80% 100%
% of countries offering CS education
Figure 7.2.18
Guidance

Countries on a global scale have been quicker to develop
guidance and policies for the use of Al in education as
opposed to developing national standards for teaching Al
As of November 2024, 10 countries have issued guidance
on Al in education: Australia, Belgium, Canada, Japan, New
Zealand, South Korea, Ukraine, the United Kingdom, the
U.S., and Uruguay. This is not surprising given the decade-
long conversation across countries about developing
guidelines and policy recommendations for Al in education.
As early as 2015, United Nations Educational, Scientific, and

Cultural Organization (UNESCO) member states committed
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to harnessing technologies toward ensuring “inclusive and
equitable quality education and promoting lifelong learning
opportunities for all” (See Sustainable Development Goal
4). Since then, UNESCO published the Beijing Consensus on
Artificial Intelligence and Education (in 2019) to offer specific
guidance on how to integrate Al technologies to ensure
all people have access to quality education by 2030 (See
Education 2030 Agenda). Within this set of recommendations,
there were four implementation and policy adoption guidelines
that touch upon Al concepts in K-12 education.

Artificial Intelligence
Index Report 2025
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https://unesdoc.unesco.org/ark:/48223/pf0000368303
https://unesdoc.unesco.org/ark:/48223/pf0000368303
https://sdgs.un.org/2030agenda
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Similar to the Al4K12 initiative, which released a set
of K-12 Al education standards organized around
“Five Big Ideas in Al” (Figure 7.2.19), international
organizations are also developing Al curricular
frameworks for countries to use. Last year, UNESCO
published Al competency frameworks for students
and teachers. The student framework includes four
core competencies: a human-centered mindset,
ethics of Al, Al techniques and applications, and
Al system design. In each competency, students
progress from understanding to applying to creating.
In the European Union, many countries rely on
DigComp 2.2, a framework for developing citizens’
digital competence, along with CS learning objectives
for students. The most recent version has guidance
on recommended knowledge, skills, and attitudes
for interacting with Al, though it does not explicitly
include guidance on teaching citizens to build Al
systems.
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Al4K12 guidelines organized around 5 Big Ideas in Al

Source: Al4K12, 2024

Figure 7.2.19



https://ai4k12.org/
https://ai4k12.org/
https://unesdoc.unesco.org/ark:/48223/pf0000391105?posInSet=3&queryId=91c6d08b-8d36-463e-9b04-fe18d68f60ee
https://unesdoc.unesco.org/ark:/48223/pf0000391104?posInSet=2&queryId=91c6d08b-8d36-463e-9b04-fe18d68f60ee
https://op.europa.eu/en/publication-detail/-/publication/50c53c01-abeb-11ec-83e1-01aa75ed71a1/language-en
https://i0.wp.com/ai4k12.org/wp-content/uploads/2020/07/AI4K12_Five_Big_Ideas_Graphic-1160958986-1594515160405.png?ssl=1
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The role Al will play in the U.S. labor force and the economic future is yet
to be fully understood, but its impact is expected to be substantial. The
technology workforce already contributes significantly to the U.S. economy,
with 9.6 million working as tech employees across industries. While there
are strong concerns about displaced employment as a result of automation,

projected demands for Al-related roles, such as database management
and data infrastructure solutions, are likely to increase. Therefore, a global
commitment to ensure postsecondary institutions are equipped to train the

future workforce and expand the computing pipeline is essential.

7.3 Postsecondary CS and Al Education

Degree Graduates

United States

Data on U.S. postsecondary CS and Al education trends in
this section comes from the National Center for Education
Statistics (NCES). Notably, the Classification of Instructional
Programs (CIP), a national standard for classifying academic
programs, was developed by NCES underthe U.S. Department
of Education. In 2016, Al-specific curricula were designated
under CIP code 11.0102, which covers programs focused
on “symbolic inference, representation, and simulation by
computers and software of human learning and reasoning
processes and capabilities, and the computer modeling
of human motor control and motion. Includes instruction
in computing theory, cybernetics, human factors, natural
language processing, and applicable aspects of engineering,
technology, and specific end-use applications.”

While the number of students earning associate degrees in
CS has largely remained stable over the past decade, several
community colleges are also pioneering Al education,

offering certificate and both associate and bachelor’s degree
programs in Al and related fields (Figure 7.3.2). Notable
examples include Maricopa Community Colleges, Houston
Community College, Miami Dade College, and several
schools in the Bay Area Community College Consortium.

The number of graduates with bachelor’s degrees in
computing has increased 22% over the last 10 years (Figure
7.31). In 2023, the top five producers of CS bachelor’s
graduates were Western Governors University, University of
California—Berkeley, Southern New Hampshire University,
University of Texas at Dallas, and University of Michigan.”
While the increased attention on Al will be slower to show
at the bachelor’s degree level, given its four-year cycle, Al’s
explosive growth has already become visible in master’s
degrees, with a 26% increase in CS graduates between 2022
and 2023, and an overall increase of 83% in the last decade.

7 Western Governors University and Southern New Hampshire University are primarily online institutions.
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https://www.comptia.org/content/research/state-of-the-tech-workforce
https://reports.weforum.org/docs/WEF_Future_of_Jobs_Report_2025.pdf
https://www.bls.gov/opub/mlr/2025/article/incorporating-ai-impacts-in-bls-employment-projections.htm#:~:text=Indeed%2C%20integration%20of%20AI%20into,percent%2C%20much%20faster%20than%20average.
https://nces.ed.gov/ipeds/cipcode/cipdetail.aspx?y=55&cipid=87243
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New CS postsecondary graduates in the United States, 2013-23

Source: National Center for Education Statistics’ Integrated Postsecondary Education Data System, 2013-23 | Chart: 2025 Al Index report
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Figure 7.3.1

Despite the fact that women graduate from college at higher rates than men, degree completion data shows an

underrepresentation of women in CS (Figure 7.3.2).

CS postsecondary graduates in the United States by gender, 2023

Source: National Center for Education Statistics’ Integrated Postsecondary Education Data System, 2013-23 | Chart: 2025 Al Index report
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Figure 7.3.2

O Table of Contents 9 Chapter 7 Preview



https://nces.ed.gov/ipeds/SummaryTables/report/300?templateId=3000&year=2023&tt=aggregate&instType=1&sid=79820f03-2ff4-4274-92d2-cfdcfeaf53ba

Chapter 7: Education
7.3 Postsecondary CS and Al Education

Black students account for 8% of bachelor’s degrees, 8% of
master’s degrees, and 7% of PhDs in computing (Figure 7.3.3).
Hispanic students account for 13% of bachelor’s degrees,
8% of master’s degrees, and 4% of PhDs in computing. By
contrast, white students account for 46% of bachelor’s
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degrees and over half (52%) of PhDs in computing; and
Asian students are overrepresented in the postsecondary
computing space, accounting for 23% of bachelor’s degrees,
28% of master’s degrees, and 17% of PhDs.

CS vs. all postsecondary graduates in the United States by race/ethnicity (US residents only), 2023

Source: National Center for Education Statistics’ Integrated Postsecondary Education Data System, 2013—23 | Chart: 2025 Al Index report
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The majority of students in computing-related graduate
programs are from countries outside ofthe U.S.—a percentage
that has steadily grown over the years. In 2023, nonresidents
accounted for 67% of master’s degree graduates and 60%
of PhD graduates. Between 2022 and 2023, international
CS master’s students increased more than twofold, growing
from 15,811 to 34,850 (IPEDS). Students from India and China
make up the vast majority of this graduate student body (93%
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Figure 7.3.3

of the 95,130 international master’s students and 60% of the
13,070 international PhD students) (Figure 7.3.4 and Figure
7.3.5).

The number of institutions in the U.S. that offer an Al-specific
bachelor’s degree nearly doubled between 2022 and 2023,
while the number of institutions offering an Al-specific
master’s degree has sharply increased as well (Figure 7.3.6).



https://nces.ed.gov/ipeds
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Number of international CS master’s students enrolled in US universities, 2022

Source: National Science Board; National Science Foundation, 2023 | Chart: 2025 Al Index report
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Figure 7.3.4

Number of international CS PhD students enrolled in US universities, 2022
Source: National Science Board; National Science Foundation, 2023 | Chart: 2025 Al Index report
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Number of institutions offering Al bachelor’s and master’s degrees in the US, 2013-23
Source: National Center for Education Statistics’ Integrated Postsecondary Education Data System, 2013-23 | Chart: 2025 Al Index report
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Figure 7.3.6
There was a sharp increase in students graduating with graduates; meanwhile, Pennsylvania State University had its
master’s degrees in Al between 2022 and 2023 (Figure first graduating class in 2022 (Figure 7.3.8). Until recently,
7.3.7). Carnegie Mellon University, which graduated more Carnegie Mellon was one of the only universities to offer
Al majors than any other institution, doubled its number of dedicated programs in Al.

New Al bachelor’s and master’s graduates in the United States, 2013-23

Source: National Center for Education Statistics’ Integrated Postsecondary Education Data System, 2013-23 | Chart: 2025 Al Index report
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Figure 7.3.7
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Top postsecondary institutions graduating students in Al in 2023 by degree type®

Source: National Center for Education Statistics’ Integrated Postsecondary Education Data System, 2023

Graduates in Al Bachelor’s Programs

Carnegie Mellon University 32
Full Sail University 19
Concordia University Wisconsin 16
University of Advancing Technology 10
Pennsylvania State University-Main Campus 7

Graduates in Al Master’s Programs

Carnegie Mellon University 178
University of Pennsylvania 98
University of North Texas 76
Northeastern University 55
San Jose State University 52

Graduates in Al PhD Programs

Carnegie Mellon University 28
Capitol Technology University 4
University of Pittsburgh-Pittsburgh Campus 1

Figure 7.3.8

8 This list includes only universities that use the Al-specific CIP code for their programs, rather than general CS. However, many students studying Al worldwide are likely enrolled in broader
CS programs.
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Global

No single dataset provides a fully standardized accounting
of Al or CS postsecondary education across all countries.
However, the Organization for Economic Cooperation
and Development has compiled data covering its member
countries and several non-OECD nations.® The International
Standard Classification of Education is used to compare
education statistics relied on by the OECD to evaluate global
progress. Information and communications technologies, or
ICT, includes such areas of study as “informatics, information
and communication technologies, or CS. These subjects
include a wide range of topics concerned with the new
technologies used for the processing and transmission of

New ICT short-cycle tertiary graduates by country, 2022

Source: OECD, 2022 | Chart: 2025 Al Index report
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digital information, including computers, computerised

networks (including the Internet), microelectronics,

multimedia, software and programming.”

The U.S. remains a global leader in ICT-related fields,
producing more graduates at each of the associate,
bachelor’s, master’s, and PhD levels than any other country
included in the sample (Figures 7.3.9 to 7.3.12). Notably, the
U.S. graduates more than twice as many associate, master’s,
and PhD students—and nearly twice as many bachelor’s
students—as the next highest country (Figure 7.3.9).

Uniited States | 58,746
Spain |, 17,764

Turkey | 16,464
Canada I 16,275

Colombia | 12,852
France | 10,820
United Kingdom NN © 425
Australia I RN 7,249
South Korea | 6,083
Mexico (I 3,720
Chile (I 2,946
Sweden (I 2,885
Israel (I 2,157
New Zealand |l 1,889

Austria [l 1,273

0 3,000 6,000 9,000 12,000 15,000 18,000

21,000 24,000 27,000 30,000 33,000 36,000 39,000

Number of new ICT short-cycle tertiary graduates

Figure 7.3.9

9 While this dataset provides insights across some country lines, it omits a number of countries likely to have large numbers of ICT graduates. The exclusion of India, China, and countries in
Africa highlights the need for global standardized data collection to ensure inclusion of countries that have made significant investments in computing education and make up a significant
proportion of the global majority. There is also a significant lag in collecting and reporting global data on education; as a result, the most recent year for which data is available is 2022.
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New ICT bachelor’s graduates by country, 2022
Source: OECD, 2022 | Chart: 2025 Al Index report
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Figure 7.3.10

New ICT master’s graduates by country, 2022

Source: OECD, 2022 | Chart: 2025 Al Index report
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Figure 7.3.11
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New ICT PhD graduates by country, 2022

Source: OECD, 2022 | Chart: 2025 Al Index report
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Figure 7.3.12
Gender parity in Al-related fields continues to be a challenge one-third of graduates. Turkey is among the countries that
globally (Figure 7.3.13). On average, women comprise fare best with respect to gender parity, with women there
approximately one-quarter of ICT postsecondary graduates comprising at least half of all graduates at the associate,

at the associate, bachelor’s, and PhD levels. Women fare bachelor’s, master’s, and PhD levels.
slightly better at the master’s level, comprising closer to
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Percentage of new ICT postsecondary graduates who are female by country, 2022
Source: OECD, 2022 | Chart: 2025 Al Index report
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Chapter 7: Education
7.3 Postsecondary CS and Al Education

Guidance

Most existing university policies and guidance around Al
pertain to how students use Al for assignments; guidance on
Al education itself tends to be relegated to the department
level (primarily in computing departments).

Al is being used across campuses by both students and
faculty at high rates: 86% of students use Al in their studies,

and 61% of faculty use Al in their teaching. Yet the guidelines
around usage still lack clarity and standardization across
universities. As of early 2025, 39% of institutions have an Al-

related acceptable use policy, an increase of 16 percentage
points from 2024. Larger universities (10,000-plus students)

are more likely to have a policy than smaller institutions (fewer
than 5,000 students). Although teaching and learning policies
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are the most impacted by Al, almost all institutional policies
are affected by technology policies (e.g., purchasing Al tools
using university resources, respecting intellectual property/
copyright laws, using Al to create malware or viruses)—from
cybersecurity and data privacy to online learning and data
and analytics.

In addition to the K-12 guidance UNESCO provided inthe 2019
Beijing Consensus on Artificial Intelligence and Education, it
offered specific guidance that is relevant for both K-12 and
postsecondary settings with an eye toward achieving the
Education 2030 agenda goals via Al technologies. The 2019
report includes five implementation and policy guidelines
pertaining to Al education in postsecondary settings.



https://26556596.fs1.hubspotusercontent-eu1.net/hubfs/26556596/Digital%20Education%20Council%20Global%20AI%20Student%20Survey%202024.pdf?utm_medium=email&_hsenc=p2ANqtz--Otl_x5du8izArZZOXIlkxXDqOVUkcnBLm_FzPmV2F3CvRF6cCE2-Z0h3lOEZoq_7m2mlgAT0cg2pXe5FAuCgqWaYe0f0GjA9MRZcLYRILXUYWVbY&_hsmi=92199303&utm_content=92199303&utm_source=hs_automation
https://26556596.fs1.hubspotusercontent-eu1.net/hubfs/26556596/DEC/Digital%20Education%20Council%20Global%20AI%20Faculty%20Survey%202025.pdf?utm_medium=email&_hsenc=p2ANqtz-_CBhylX1al3silrzEeCfKhWtFzUbmdQoZETUu2sT4KneWrmmmv2pRtnhFzuw7K2czHyfd8eVNfrr_fBa9peYAwJS4rk2N44HDAJj2Ntl3bqFH9GD0&_hsmi=102804064&utm_content=102804064&utm_source=hs_automation
https://www.educause.edu/content/2025/2025-educause-ai-landscape-study/policies-and-guidelines
https://www.educause.edu/content/2025/2025-educause-ai-landscape-study/policies-and-guidelines
https://unesdoc.unesco.org/ark:/48223/pf0000368303
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7.4 Looking Ahead

7.4 Looking Ahead

The intentional design of an equitable Al educational
ecosystem will be critical for the responsible development
and deployment of future technological innovations. The
current systems in which Al has proliferated have led to
detrimental outcomes, such as mis/disinformation campaigns
to influence national political outcomes, development of Al-

enabled weapons, and infringement of copyright-protected
intellectual property. The pressing need to prioritize a

better approach to building Al is evident. To do so, it is
necessary to reimagine an educational program where Al
competencies, inclusive of building a lens interrogating
the ethics of Al in addition to technical creation, are seen
as core to preparing students for a technology-powered
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future. There are already CS-based infrastructure, policies,
and implementation strategies that offer opportunities to
integrate Al education more seamlessly. As Al innovations
rapidly evolve, transforming education is urgent so that
future creators of these technologies are made aware of
potential harms and have the competencies to mitigate
negative impacts. Academic institutions around the world
must continue to progress (and monitor their progress) on
creating Al pathways, adopt policies to expand access to
relevant courses, and implement strategies to upskill the
educator workforce and engage students to participate and
build competencies equitably.



https://www.hrw.org/news/2024/08/15/disinformation-about-us-elections-targets-communities-color
https://www.hrw.org/news/2024/08/15/disinformation-about-us-elections-targets-communities-color
https://proceedings.mlr.press/v235/simmons-edler24a.html
https://proceedings.mlr.press/v235/simmons-edler24a.html
https://www.wired.com/story/ai-copyright-case-tracker/
https://www.wired.com/story/ai-copyright-case-tracker/
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CHAPTER 8:
Public Opinion

Overview

As Al continues to permeate broad swaths of society, it is becoming increasingly
important to understand public sentiment around the technology. Insights into how
people perceive Al can help anticipate its societal impact and reveal how adoption
varies across countries and demographic groups. Early data suggests growing public
anxiety about Al, with some regions expressing significantly more pessimism than
others. As the technology continues to advance, will these trends persist?

This chapter explores public opinion on Al through global, national, demographic, and
ethnic perspectives. It draws on multiple data sources, including longitudinal lpsos
surveys tracking global Al attitudes, American Automobile Association surveys on self-
driving vehicles, and recent research into local U.S. policymakers’ views on Al.
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CHAPTER 8:
Public Opinion

Chapter Highlights

1. The world grows cautiously optimistic about Al products and services. Among the 26 nations surveyed by
Ipsos in both 2022 and 2024, 18 saw an increase in the proportion of people who believe Al products and services offer more
benefits than drawbacks. Globally, the share of individuals who see Al products and services as more beneficial than harmful has
risen from 52% in 2022 to 55% in 2024.

2. The expectation and acknowledgment of Al’'s impact on daily life is rising. Around the world, two thirds
of people now believe that Al-powered products and services will significantly impact daily life within the next three to five
years—an increase of six percentage points since 2022. Every country except Malaysia, Poland, and India saw an increase in this
perception since 2022, with the largest jumps in Canada (17%) and Germany (15%).

3. Skepticism about the ethical conduct of Al companies is growing, while trust in the fairness of Al is
declining. Globally, confidence that Al companies protect personal data fell from 50% in 2023 to 47% in 2024. Likewise, fewer
people today believe that Al systems are unbiased and free from discrimination compared to last year.

4. Regional differences persist regarding Al optimism. First reported in the 2023 Al Index, significant regional
differences in Al optimism endure. A large majority of people believe Al-powered products and services offer more benefits than
drawbacks in countries like China (83%), Indonesia (80%), and Thailand (77%), while only a minority share this view in Canada
(40%), the United States (39%), and the Netherlands (36%).

5. People in the United States remain distrustful of self-driving cars. A recent American Automobile Association
survey found that 61% of people in the U.S. fear self-driving cars, and only 13% trust them. Although the percentage who express
fear has declined from its 2023 peak of 68%, it remains higher than in 2021 (54%).

6. There is broad support for Al regulation among local U.S. policymakers. In 2023, 73.7% of local U.S.
policymakers—spanning township, municipal, and county levels—agreed that Al should be regulated, up significantly from
55.7% in 2022. Support was stronger among Democrats (79.2%) than Republicans (55.5%), though both registered notable
increases over 2022.
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CHAPTER 8:
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Chapter Highlights (cont’d)

7. Al optimism registers sharp increase among countries that previously showed the most skepticism.
Globally, optimism about Al products and services has increased, with the sharpest gains in countries that were previously the
most skeptical. In 2022, Great Britain (38%), Germany (37%), the United States (35%), Canada (32%), and France (31%) were
among the least likely to view Al as having more benefits than drawbacks. Since then, optimism has grown in these countries by
8%, 10%, 4%, 8%, and 10%, respectively.

8. Workers expect Al to reshape jobs, but fear of replacement remains lower. Globally, 60% of respondents
agree that Al will change how individuals do their job in the next five years. However, a smaller subset of respondents, 36%,
believe that Al will replace their jobs in the next five years.

9. Sharp divides exist among local U.S. policymakers on Al policy priorities. While local U.S. policymakers
broadly support Al regulation, their priorities vary. The strongest backing is for stricter data privacy rules (80.4%), retraining for
the unemployed (76.2%), and Al deployment regulations (72.5%). However, support drops significantly for a law enforcement
facial recognition ban (34.2%), wage subsidies for wage declines (32.9%), and universal basic income (24.6%).

10. Al is seen as a time saver and entertainment booster, but doubts remain on its economic impact. Global
perspectives on Al’s impact vary. While 55% believe it will save time, and 51% expect it will offer better entertainment options,
fewer are confident in its health or economic benefits. Only 38% think Al will improve health, whilst 36% think Al will improve the
national economy, 31% see a positive impact on the job market, and 37% believe it will enhance their own jobs.
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8.1 Public Opinion

Global Public Opinion

This section explores global differences in opinions on Al
through surveys conducted by Ipsos in 2022, 2023, and
2024. These surveys reveal that public perceptions of Al vary
widely across countries and demographic groups.

Al Products and Services

In 2024, Ipsos ran a survey on global attitudes toward Al. The
survey consisted of interviews with 23,685 adults across 32
countries.

Figure 8.1.1 shows the percentage of respondents who agree
with specific statements. The increase in public awareness of
Al between 2022 and 2024 has remained relatively consistent.
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In 2024, 67% of respondents report a good understanding of
what Al is, and 66% anticipate that Al will profoundly change
their daily life in the near future. The proportion of the global
population that perceives Al-powered products and services
as having more benefits than drawbacks has increased
modestly, rising from 52% in 2022 to 55% in 2024.

Figure 8.11 also highlights respondents’ growing concerns.
In the last year, there has been a three percentage point
decrease in those who trust that companies using Al will
protect their personal data and a two percentage point
decrease in respondents’ trust that Al will not discriminate or
show bias toward any group of people.

Global opinions on products and services using Al (% of total), 2022-24

Source: Ipsos, 2022-24 | Chart: 2025 Al Index report
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Figure 8.1.1

1See Appendix for more details about the survey methodology. The survey was conducted from April to May, 2024.
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of Al's benefits
considerably by country, according to the Ipsos survey. In

Perceptions versus drawbacks vary
general, respondents in Asia and Latin America believe that Al
will have more benefits than drawbacks: 83% of Chinese, 70%
of Mexican, and 62% of Indian respondents view Al products
and services as more beneficial than harmful (Figure 8.1.2).
In contrast, in Europe and the Anglosphere, respondents are
more skeptical. For example, 46% of British, 44% of Australian,
40% of Canadian, and 39% of American respondents believe

that Al will have more benefits than drawbacks.
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Al sentiment appears to be warming, particularly in countries
that were once the most skeptical. Among the 26 nations
surveyed by Ipsos in both 2022 and 2024, 18 saw an increase
in the proportion of people who believe Al products and
services offer more benefits than drawbacks. In 2022, France
(31%), Canada (32%), the United States (35%), Germany (37%),
Australia (37%), and Great Britain (38%) ranked among the
least optimistic about Al. By 2024, the percentages in all these
countries had risen.

‘Products and services using Al have more benefits than drawbacks,’ by country (% of total), 2022-24

Source: Ipsos, 2022-24 | Chart: 2025 Al Index report
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8.1 Public Opinion

Figure 8.1.3 shows responses to Ipsos’ survey on Al products
and services by country. On average, survey respondents
in China had the highest level of awareness, trust, and
excitement about Al’s use in products and services: 81% of
respondents in China knew what products and services use
Al, 80% reported that those products and services made
them excited, 76% trusted Al to not discriminate or show bias,
and overall 86% believed that products and services using
Al would profoundly change their daily life in the next three
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to five years. Conversely, just 58% of American respondents
thought that Al would profoundly change their life in the
next three to five years, and 34% reported that products and
services using Al made them excited.

Concerns about the privacy of personal data appear to be
strongest in Japan and Canada, while concerns about Al
discriminating against certain groups was highest in Sweden
and Belgium.

Opinions about Al by country (% agreeing with statement), 2024

Source: Ipsos, 2024 | Chart: 2025 Al Index report
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Figure 8.1.4 illustrates respondents’ answers to whether they
are excited about Al and whether they are nervous about it.
Notable cross-country trends emerge. As previously noted,
many Anglosphere nations—such as the United Kingdom, the
United States, Canada, Australia, and New Zealand—report

Artificial Intelligence
Index Report 2025

[Az

the highest levels of nervousness and the lowest excitement
about Al.
China, South Korea, and Indonesia, exhibit higher excitement

In contrast, several Asian countries, including

and lower nervousness levels, with Japan standing as an
exception to this trend.

Global opinions about products and services using Al by country, 2024

Source: Ipsos, 2024 | Chart: 2025 Al Index report
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A majority of the countries surveyed by lpsos in 2023 were
surveyed again in 2024, enabling cross-year comparisons.
Figure 8.1.5 highlights the year-over-year change in answers
to particular Al-related questions. Overall, the Al Index
observes slightly rising concerns about the use of Al, with
an average 0.6% decrease in positive responses. This is
largely driven by a 3% decrease in trust that companies that
use Al will protect personal data, and a 2% decrease in trust
that Al will not discriminate or show bias toward any group

of people.?

[Az

Brazil and Malaysia saw the sharpest average decline in
awareness, trust, and excitement about Al. In both countries,
that negative trend was led by sharp declines in respondents
who trust Al companies to protect their personal data.

South Africa and Ireland saw the sharpest average increases in
awareness, trust, and excitement about Al. Ireland’s positive
trend appears to be led by positive user experiences, since it
reports the highest increase across countries in respondents
who say their daily lives have been profoundly impacted by
products and services using Al.

Percentage point change in opinions about Al by country (% agreeing with statement), 2023-24

Source: Ipsos, 2023-24 | Chart: 2025 Al Index report
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2 Average global responses to the question “Products and services using Al make me nervous” are excluded from this average because this is the only question where a positive score would

yield a normatively negative result.
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8.1 Public Opinion

Figure 8.1.6 compares responses from the 2022 and 2024 the next three to five years has risen by 6%. Every country
Ipsos surveys, highlighting shifts in sentiment since the except India, Malaysia, and Poland saw an increase in this
launch of ChatGPT. Globally, the belief that Al-powered perception since 2022, with the largest jumps in Canada
products and services will profoundly change daily life within (17%) and Germany (15%).

Percentage point change in opinions about Al by country (% agreeing with statement), 2022 vs. 2024

Source: Ipsos, 2022-24 | Chart: 2025 Al Index report
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Al and Jobs

This year’s Ipsos survey included more questions about how
people perceive Al’'s impact on their current jobs. Figure
8.1.7 illustrates various global perspectives on the expected
impact of Al on employment. Overall, 60% of respondents
believe Al is likely to change how they do their job in the next
five years and 36%, or more than one in three, believe that Al
is likely to replace their current job in the next five years.
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Year-over-year comparisons for this question are challenging
because in 2023 the survey did not differentiate between
“very likely” and “somewhat likely.” Nevertheless, when the
2024 categories are aggregated and compared to the 2023
results, the overall sentiment appears largely unchanged. In
2023, 57% of respondents agreed that Al would change how
jobs are done, while 36% believed Al was likely to replace
their job within five years.

Global opinions on the perceived impact of Al on current jobs, 2024

Source: Ipsos, 2024 | Chart: 2025 Al Index report
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Chapter 8: Public Opinion
8.1 Public Opinion

Opinions on whether Al will significantly impact an
individual’s job vary across demographic groups (Figure
8.1.8). Younger generations, such as Gen Z and millennials,
are more inclined to agree that Al will change how they do
their jobs compared to older generations like Gen X and baby
boomers. Specifically, in 2024, 67% of Gen Z compared to
49% of boomers agree with the statement that Al will likely
affect their current jobs.
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Across 2023 and 2024, all generations increasingly agree
that Al will change how they do their jobs over the next five
years. Interestingly, of the 3% who believe Al will change
how they do their jobs, the greatest increase was among both
millennials and baby boomers, perhaps indicating increasing
cross-generational awareness.

Global opinions on whether Al will change how current jobs are done in the next five years (% agreeing with

statement), 2023 vs. 2024

Source: Ipsos, 2024 | Chart: 2025 Al Index report
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8.1 Public Opinion

Al and Livelihood

The Ipsos survey also explored the impact that respondents
believe Al will have on various aspects of their lives, such as
the economy, entertainment, and health.

Figure 8.1.9 shows that 55% of global respondents said
they believe Al will reduce the amount of time it takes them
to get things done, and 51% believe Al will improve their
entertainment options. Opinions on the economy and the job
market were more skeptical. In these sectors, just 36% and
31% of respondents believe Al will have a positive impact.

Figure 8.1.9 also shows significant range in respondents
who believe Al will improve the economy in their country.
Countries in Asia are the most optimistic about Al’s economic
impact, with 72% of respondents in China saying they expect
Al to improve the economy, followed by 54% in Indonesia.
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Conversely, less than 25% of respondents in the Netherlands,
the United States, Belgium, Sweden, and Canada believe that
Al will improve the economy.

Within each country, respondents with an optimistic outlook
on Al’simpact on the economy tended to express optimism in
otherareas. For example, countries that expressed the highest
expectation that Al will positively impact their economy also
tended to believe that Al will reduce the amount of time it
takes to get things done and that Al will improve health.

As a global average, 38% of respondents believe Al will
improve health. Mexico reported the highest rates of
optimism, with 56% believing that Al will have a positive
impact on health. Conversely only 19% of respondents in
Japan had positive expectations of Al’s impact on health.

Global opinions on the potential of Al to improve life by country, 2024

Source: Ipsos, 2024 | Chart: 2025 Al Index report
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8.1 Public Opinion

Figure 8.1.10 and Figure 8.1.11 provide a correlative analysis of
the preceding data, examining the extent to which responses
to certain questions are interrelated. Notably, there is a strong
correlation between respondents’ agreement that Al will
improve the job market and their belief that it will benefit their
own jobs. In some countries, such as Poland, optimism on both
fronts is low, with only 17% and 21% of respondents expressing

Artificial Intelligence
Index Report 2025

[Az

agreement, respectively. In contrast, sentiment is much more
positive in China, where 44% believe Al will enhance the job
market, and 62% think it will improve their jobs.

Similarly, countries where respondents believe Al will reduce
the time required to complete tasks are also more likely to
report that Al will improve their individual jobs.

Global opinion on the potential of Al to improve the job market vs. individual jobs, 2024

Source: Ipsos, 2024 | Chart: 2025 Al Index report
100%

90%

80%
2
5 70%
o |
S Chi I
a ®China
60% .
§ Indonesia® @Peru
. South Africa® Thalland 09 Mexico
I I France o - Colombia '~~~ - - - - - - - - T T T T T T T T T T T
2 United States, Brazil @ ? "\d'a
a ustralia Singapore® Malays T
= 40% New Zealand Chilc® ® ® Turkey
£ Irelan Argentlna |
kel
2 Sweden ® 6 e tal I
2 30% ﬁglum Switzerland Y . Global |
ain
= Canad! Ge?many |
20% South Korea Y !
Japan Netherlands |
10% Poland Great Britain |
|
0% ]
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
The job market (% of respondents) Figure 8.1.10
Global opinion on the potential of Al to improve time to get things done vs. individual jobs, 2024
Source: Ipsos, 2024 | Chart: 2025 Al Index report
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8.1 Public Opinion

Highlight:
Self-Driving Cars

As discussed in Chapter 2: Technical Performance, self-
driving cars have made significant advancements in both
capability and adoption. With companies like Waymo and
Zoox becoming more prominent, understanding American
attitudes toward self-driving technology is more important

than ever.

The American Automobile Association (AAA) conducts

an annual survey to assess public sentiment toward self-

US driver attitude toward self-driving vehicles, 2021-25

Source: AAA, 2025 | Chart: 2025 Al Index report
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driving cars. The most recent survey, conducted in January
2025, was designed to be representative of approximately
97% of U.S. households. Figure 8.1.12 presents the results,
revealing that despite the gradual rollout of self-driving
cars on American roads, a majority of Americans (61%)
remain fearful of the technology. Only 13% of respondents
expressed trust in self-driving cars. While fear has declined
slightly from its 2023 peak of 68%, it remains higher than in
2021, when 54% of Americans reported being afraid.

2023 2024 2025

Figure 8.1.12


https://newsroom.aaa.com/2025/02/aaa-fear-in-self-driving-vehicles-persists/
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8.2 US Policymaker Opinion

Understanding public sentiment toward Al requires not
only assessing the views of the general public but also
those of key stakeholders, such as policymakers, who play
a critical role in shaping Al regulation and policy. This year,
an international team of researchers from Uppsala, Oxford,
Harvard, and Syracuse universities released one of the first
comprehensive studies on the perspectives of local U.S.
policymakers—spanning township, municipal, and county
levels—on Al’s future impact and regulation. Conducted in
two waves, in 2022 and 2023, the study gathered responses
from approximately 1,000 policymakers. Its timing allowed
researchers to compare how policymakers’ views on Al
shifted before and after the launch of ChatGPT.

Figure 8.2.1illustrates the extent to which local policymakers
agree with the statement: Al should be regulated by the
government. In 2023, 73.7% of local U.S. policymakers
supported this view, a significant increase from 55.7% in 2022.
The launch of ChatGPT appears to have played a key role in
shifting policymaker sentiment toward regulation. Support
for Al regulation was higher among Democrats (79.2%) than
Republicans (55.5%), though both groups registered a notable
increase after 2022.

Local US officials’ support for government regulation of Al by party and year

Source: Hatz et al., 2025 | Chart: 2025 Al Index report

H Agree Neither agree nor disagree Ml Disagree
Al 64.50%
2023 73.70%
2022 55.70%
Democrats 79.20%
Republicans 55.50%
Democrats in 2023 84.40% -
Democrats in 2022 74.60%
Republicans in 2023 67.90%
Republicans in 2022 42.70%
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% of respondents
Figure 8.2.1
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8.2 US Policymaker Opinion

Given that most local policymakers support some form of Al (Figure 8.2.2). In contrast, there is significantly less backing
regulation, which specific policies do they favor? At 80.4%, for redistributive measures. Just 33.9% support wage
the strongest support is for stricter data privacy regulations. subsidies to offset wage declines and just 24.6% support
In addition, 76.2% support retraining programs for the universal basic income.

unemployed, and 72.5% support Al deployment regulations

Local US officials’ views on what Al policies would be beneficial for 2025-50
Source: Hatz et al., 2025 | Chart: 2025 Al Index report
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Parole and sentencing Al regulations 54.70%
Bias audits for hiring and promotion Al 51.70%
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Law enforcement facial recognition ban 34.20%
Wage subsidies for wage declines 33.90%
Universal basic income 24.60%
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Figure 8.2.2
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8.2 US Policymaker Opinion

When it comes to Al policy, most local legislators do not agreement with this statement has increased from 32.2%
believe they will have to take immediate action (Figure in 2022 to 36.6% in 2023. This reflects the impact of major
8.2.3). Only 34.3% believe they will need to act within the Al developments, such as the launch of ChatGPT, on
next few years, compared to 56.5% who do not. However, policymakers’ perspectives.

Local US officials’ likelihood of making Al policy decisions by party and year

Source: Hatz et al., 2025 | Chart: 2025 Al Index report
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8.2 US Policymaker Opinion

Only 29.8% of locally elected officials feel adequately informed to make Al policy decisions (Figure 8.2.4). While confidence in Al-
related policymaking has increased slightly across both parties from 2022 to 2023, it remains relatively low overall.

Local US officials’ feeling adequately informed to make decisions about Al by party and year
Source: Hatz et al., 2025 | Chart: 2025 Al Index report
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Chapter 1: Research and Development
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Al Publication Analysis

For this analysis, the Al Index used OpenAlex, an open scholarly
database with over 260 million research publications, as its
primary data source. OpenAlex classifies papers using its own
knowledge organization system, known as OpenAlex Topics—a
taxonomy of around 4,500 topics combining Scopus codes and
CWTS classification. The system uses a deep learning model
that considers titles, abstracts, journal names, and citation
networks for classification. To identify Al-related topics more
precisely, the Al Index analyzed computer science publications
identified by OpenAlex and refined the classifications using the
Computer Science Ontology and the CSO Classifier.

The Computer Science Ontology (CSO) is a large-scale,
automatically generated ontology of research areas derived
from 16 million publications using the Klink-2 algorithm. It
features a hierarchical structure with thousands of subtopics,
allowing for precise mapping of specific terms to broader
research fields. Compared to general-purpose scholarly
databases like OpenAlex, Scopus, and Web of Science, CSO
offers a more detailed and fine-grained representation of the
research landscape. As a result, it has been widely used for
scholarly data exploration, analysis, modeling, and expert
identification and recommendation. Version 3.4.1—used in
this analysis—includes approximately 15,000 topics and
166,000 relationships within computer science. Released on
Jan. 17, 2025, this version introduces over 150 new research
topics in artificial intelligence, bringing the total to 2,369 Al-
related topics and 12,620 hierarchical relationships within the
Al domain alone.
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To analyze research trends, the Al Index used the CSO
Classifier—an unsupervised method that automatically
categorizes research papers based on CSO topics. The
classifier follows a three-stage pipeline that processes
paper titles and abstracts: A syntactic module detects
direct mentions of CSO topics; a semantic module uses
word embeddings to identify related concepts; and a
postprocessing module merges results, filters out irrelevant
topics, and adds broader categories for a more refined
classification. For this analysis, the Al Index extended the
CSO Classifier to focus specifically on artificial intelligence
and its subtopics. Since its initial release, the classifier has
gained significant and growing interest due to its versatility.
For example, Springer Nature uses it to routinely classify
proceedings books, improving metadata quality. Beyond
academic publishing, it has been successfully applied to
categorize research software, YouTube videos, press releases,
job ads, and IT museum collections.

Accurately categorizing research papers as either conference
proceedings or journal articles is essential for this analysis.
OpenAlex’s metadata fields—type, crossref_type, and
source_type—can sometimes conflict. To resolve these
inconsistencies, the Al Index mapped OpenAlex records to
DBLP, a leading bibliographic database for computer science
publications. Known for its high metadata quality, DBLP
continuously adds new publications through a rigorous,
semiautomated curation process and currently indexes 3.6
million conference papers and 3 million journal articles. The
initial matching between OpenAlex and DBLP was performed
using DOls. For remaining unmatched papers, the Al Index
used a combination of title and publication year. To streamline
this process, the Al Index built a title index to optimize search
and ensure efficient mapping across the datasets.

Al publications are aggregated based on several parameters
to provide a comprehensive analysis. Publications are



https://arxiv.org/abs/2205.01833
https://docs.google.com/document/d/1bDopkhuGieQ4F8gGNj7sEc8WSE8mvLZS/edit?tab=t.0
https://service.elsevier.com/app/answers/detail/a_id/12007/supporthub/scopus/
https://www.leidenmadtrics.nl/articles/an-open-approach-for-classifying-research-publications
https://doi.org/10.1007/978-3-030-00668-6_12
https://arxiv.org/abs/2409.04432
https://skm.kmi.open.ac.uk/report-on-the-computer-science-ontology-and-cso-classifier-impact/
https://doi.org/10.1007/s00799-021-00305-y
https://doi.org/10.1007/s00799-021-00305-y
https://doi.org/10.1007/978-3-030-30796-7_31
https://skm.kmi.open.ac.uk/report-on-the-computer-science-ontology-and-cso-classifier-impact/
https://dblp.org/
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grouped by year, considering the publication date of the
most recent versions. Additionally, the Al Index groups

publications by geographic areas or World Bank regions
using the affiliations of authors. This means a single paper can
contribute to multiple counts if coauthored by researchers
from different countries, with each country receiving a count.
When authors’ affiliations are missing, these publications are
mapped as “Unknown.” Furthermore, sectors are associated
with publications through authors’ affiliations when available,
which may lead to a publication being counted for multiple
sectors. Citation counts are included when available; those
without citation data are classified as “Unknown.”

Top 100 Publications Analysis

The Al Index conducted a comprehensive analysis of
influential Al publications by collecting and analyzing citation
data from multiple sources including OpenAlex, Google
Scholar, and Semantic Scholar. Initially gathering the top 150
most-cited papers per publication year from OpenAlex, the
list was refined to 100 publications through careful review.

The methodology attributes publications to all countries and
regions represented by authors’ affiliations, meaning a single
paper can contribute to multiple counts. For instance, a paper
coauthored by researchers from the United States and China
counts once for each country. This approach may result in
overlapping totals in aggregate statistics. Publication years
are based on the most recent versions, whether in journals,
conferences, or repositories like arXiv. To maintain accuracy,
organizational affiliations were verified and standardized,
with countries assigned according to headquarters’ locations.

The full list of the top 100 Al publications is available here.

Al Patent Analysis

The Al Index identifies Al-related patents using a hybrid
classification approach, combining keyword-based text
identification.

analysis with classification-code-based
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Patent-level bibliographic data is sourced from PATSTAT
Global, a comprehensive database issued by the European
Patent Office (EPO). The analysis focuses on granted patents
from 2010 onward, aggregated at the DOCDB family level to
avoid duplicate counting of the same invention.! Patents are
attributed to countries based on the publication authority of
the earliest recorded grant publication.

Patent abstracts and titles originally published in languages
other than English were translated using the deep-translator
tool, Google Translate engine, and the Meta NLLB-200
machine translation model. Post-translation, patent texts
were processed using natural language processing (NLP)
techniques. These included the removal of stop words
and special characters, part-of-speech (POS) tagging to
retain key grammatical categories, lowercase conversion,
lemmatization, and replacement of numerical measures with
a <NUM> tag.

Al-related patents are identified by searching for relevant terms
in patent titles and abstracts using regular expressions (regex).
An Al-specific keyword dictionary was developed through
a structured multistep process, incorporating keywords
generated by Al models, expanded using established Al
lexicons such as those from Yamashita et al. (2021), and refined
through Word2Vec-based synonym identification. Further
validation was conducted using BERTopic topic modeling and
DeBERTA-based zero-shot classification, with manual checks
applied to reduce false positives.

Inadditionto keyword-based classification, Al-related patents
were identified using International Patent Classification
(IPC) and Cooperative Patent Classification (CPC) codes.
A curated list of Al-relevant codes was compiled through a
combination of Al model analysis, regex-based searches, and
prior research, including classifications from Pairolero et al.
(2023) and WIPO (2024). The final dataset was constructed
by merging results from both approaches, balancing coverage
and accuracy.

1 Despite this aggregation procedure, duplicates occasionally appear in marginal cases where applications within the same DOCDB family share the same earliest filing date. The Al Index
removes duplicate values with respect to the aggregation variables (e.g., counting by year) when presenting analytics.
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https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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https://www.epo.org/en
https://pypi.org/project/deep-translator/
https://ai.meta.com/blog/nllb-200-high-quality-machine-translation/
https://www.oecd.org/en/publications/measuring-the-ai-content-of-government-funded-r-d-projects_7b43b038-en.html
https://www.wipo.int/en/web/classification-ipc
https://www.epo.org/en/searching-for-patents/helpful-resources/first-time-here/classification/cpc
https://www.uspto.gov/sites/default/files/documents/oce-aipd-2023.pdf
https://www.uspto.gov/sites/default/files/documents/oce-aipd-2023.pdf
https://www.wipo.int/web-publications/patent-landscape-report-generative-artificial-intelligence-genai/en/index.html
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Epoch Notable Models Analysis
The Al forecasting research group Epoch Al maintains a dataset
of landmark Al and ML models, along with accompanying
information about their creators and publications, such as
the list of their authors, number of citations, type of Al task
accomplished, and amount of compute used in training.

The nationalities of the authors of these papers have
important implications for geopolitical Al forecasting. As
various research institutions and technology companies start
producing advanced ML models, the global distribution of
Al development may shift or concentrate in certain places,
which in turn affects the geopolitical landscape because Al is
expected to become a crucial component of economic and
military power in the near future.

To track the distribution of Al research contributions on
landmark publications by country, the Epoch dataset is coded
according to the following methodology:

1. A snapshot of the dataset was taken in March 2025.
This includes papers about landmark models, selected
using the inclusion criteria of importance, relevance,
and unigueness, as described in the Compute Trends
dataset documentation.

2. The authors are attributed to countries based on their
affiliation credited on the paper. For international
organizations, authors are attributed to the country
where the organization is headquartered, unless a
more specific location is indicated.

3. All of the landmark publications are aggregated within
time periods (e.g., monthly or yearly) and the national
contributions compiled to determine the extent of
each country’s contribution to landmark Al research
during each time period.

4. The contributions of different countries are compared
over time to identify any trends.
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Training Cost Analysis

To create the dataset of cost estimates, the Epoch database
was filtered for models released during the large-scale ML
era? that were in the top 10 of training compute at the time
of release. This filtered for the largest-scale ML models.
The Transformer model was added to this set of models for
further context.

For the selected ML models, the training time and the type,
quantity, and hardware utilization rate were determined
from the publication, press release, or technical reports, as
applicable. Cloud rental prices for the computing hardware
used by these models were collected from online historical
archives of cloud vendors’ websites.®

Training costs were estimated from the hardware type,
quantity, and time by multiplying the hourly cloud rental rates
(at the time of training)* by the quantity of hardware hours.
However, some developers purchased hardware rather than
renting cloud compute, and cloud prices vary by vendor
and by rental commitment, so the true costs incurred by the
developers may vary.

Various challenges were encountered while estimating the
training cost of these models. Often, the developers did not
disclose the duration of training or the hardware that was
used. In other cases, cloud compute pricing was not available
for the hardware. The investigation of training cost trends is
more thoroughly detailed in a separate report by Epoch Al.

Al Conference Attendance

The Al Index reached out to the organizers of various Al
conferences in 2024 and asked them to provide information
on total attendance. For conferences that posted their
attendance totals online, the Al Index used those reported
totals and did not reach out to the conference organizers.

2 The selected cutoff date was Sept. 1, 2015, in accordance with Compute Trends Across Three Eras of Machine Learning (Epoch, 2022).

3 Historic prices were collected from archived snapshots of Amazon Web Services, Microsoft Azure, and Google Cloud Platform price catalogs viewed through the Internet Archive Wayback

Machine.

4 The chosen rental rate was the most recent published price for the hardware and cloud vendor used by the developer of the model, at a three-year commitment rental rate, after subtracting

the training duration and two months from the publication date. If this price was not available, the most analogous price was used—either the same hardware and vendor at a different date, or
the same hardware from a different cloud vendor. If a three-year commitment rental rate was unavailable, this was imputed from other rental rates based on the empirical average discount for
the given cloud vendor. If the exact hardware type was not available (e.g., Nvidia A100 SXM4 40GB), a generalization was used (e.g., Nvidia A100).
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GitHub

Identifying Al Projects

In partnership with researchers from Harvard Business
School, Microsoft Research, and Microsoft’s Al for Good
Lab, GitHub identifies public Al repositories following the
methodologies of Gonzalez, Zimmerman, and Nagappan
(2020) and Dohmke, lansiti, and Richards (2023), using topic
labels related to Al/ML and generative Al, respectively, along
with other relevant keywords identified through snowball
sampling, such as “machine learning,” “deep learning,” and
“artificial intelligence.” GitHub further augments the dataset
with repositories that have a dependency on the PyTorch,
TensorFlow, OpenAl, Transformers, XGBoost, scikit-learn,
and SciPy libraries for Python.

Mapping Al Projects to Geographic Areas

Public Al projects are mapped to geographic areas using IP
address geolocation to determine the mode location of a
project’s owners each year. Each project owner is assigned
a location based on their IP address when interacting with
GitHub. If a project owner changes locations within a year,
the location for the project would be determined by the mode
location of its owners sampled daily in the year. Additionally,
the last known location of the project owner is carried
forward on a daily basis even if no activities were performed
by the project owner that day. For example, if a project
owner performed activities within the United States and then
became inactive for six days, that project owner would be
considered to be in the United States for that seven-day span.

Environmental Impact Analysis

The Al Index estimated the carbon emissions of training
language and vision models using a calculator proposed by
Lacoste et al. (2019). The analysis focused on the training
stage emissions, excluding embodied hardware production,
idle infrastructure, and deployment emissions. The study
examined four model categories: industry language models,
academic language models, industry vision models, and
academic vision models.
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The calculator’s accuracy was verified against published
emission values. Calculator inputs included hardware
type, GPU hours, provider, and compute region. For newer
hardware like the H100 GPU (released in 2022), the A100
SXM4 80GB was used as a substitute in calculations. Provider
selection was based on known partnerships (e.g., Google
models using GCP, OpenAl using Azure), while compute
regions were determined by team locations.

Special consideration was given to models trained on
custom hardware, such as BLOOM'’s use of the Jean
Zay supercomputer in France. In these cases, private
infrastructure calculations incorporated carbon efficiency
(kg/kWh) and offset percentages.

The study evaluated 50 models in total: 34 industry language
models (2018-24), eight industry vision models (2019-
23), four academic language models (2020-23), and four
academic vision models (2011-22), selecting particularly
influential models in their respective domains.



https://www.microsoft.com/en-us/research/uploads/prod/2020/05/gonzalez-msr-2020.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/05/gonzalez-msr-2020.pdf
https://arxiv.org/abs/2306.15033
https://arxiv.org/abs/1910.09700
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Benchmarks

Inthischapter,the AlIndexreports onbenchmarks,recognizing
their importance in tracking Al’s technical progress. As a
standard practice, the Index sources benchmark scores from

leaderboards, public repositories such as Papers With Code
and RankedAGl, as well as company papers, blog posts, and
product releases. The Index operates under the assumption
that the scores reported by companies are accurate and
factual. The benchmark scores in this section are current as
of mid-February 2025. However, since the publication of the
Al Index, newer models may have been released that surpass
current state-of-the-art scores.

1. ARC-AGI: Data on ARC-AGI was taken from the ARC-
AGI paper and OpenAl video in February 2025. To learn
more about ARC-AGI, please read the original paper.

2. Arena-Hard-Auto: Data on Arena-Hard-Auto was
taken from the LMSYS leaderboard in February 2025.
To learn more about Arena-Hard-Auto, please read

the original paper.
3. Bench2Drive: Data on Bench2Drive was taken from

the Bench2Drive paper in February 2025. To learn more
about Bench2Drive, please read the original paper.

4. Berkeley Function Calling: Data on Berkeley Function
Calling was taken from the Berkeley Function Calling

leaderboard in February 2025. To learn more about
Berkeley Function Calling, please read the original
work.

5. BigCodeBench: Data on BigCodeBench was taken
from the BigCodeBench leaderboard in February

2025. To learn more about BigCodeBench, please read
the original work.
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6. Chatbot Arena: Data on Chatbot Arena was taken
from the Chatbot Arena leaderboard in February

2025. To learn more about Chatbot Arena, please read
the original paper.

7. FrontierMath: Data on FrontierMath was taken from
the FrontierMath paper and OpenAl video in February

2025. To learn more about FrontierMath, please read
the original paper. The visual was supplemented with
benchmark data from OpenAl’s 03 model, sourced
from a Youlube video announcing its launch in
December 2025.

8. GAIA: Data on GAIA was taken from the GAIA
leaderboard in February 2025. To learn more about
GAIA, please read the original paper.

9. GPQA: Data on GPQA was taken from the GPQA
paper and OpenAl video in February 2025. To learn

more about GPQA, please read the original paper.

10. GSM8K: Data on GSM8K was taken from the GSM8K
Papers With Code leaderboard in February 2025. To
learn more about GSMB8K, please read the original
paper.

11. HELMET: Data on HELMET (How to Evaluate Long-
Context Models Effectively and Thoroughly) was

taken from the HELMET paper in February 2025. To
learn more about HELMET, please read the original
paper.

12. HLE: Data on Humanity’s Last Exam (HLE) was taken
from the HLE paper in February 2025. To learn more
about HLE, please read the original paper.

13. HumanEval: Data on HumanEval was taken from
the HumanEval Papers With Code leaderboard in

February 2025. To learn more about HumanEval,
please read the original paper.

14. LRS2: Data on Oxford-BBC Lip Reading Sentences
2 (LRS2) was taken from the LRS2 Papers With Code
leaderboard in February 2025. To learn more about

LRS2, please read the original paper.



https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
https://rankedagi.com
https://arxiv.org/pdf/2412.04604
https://arxiv.org/pdf/2412.04604
https://www.youtube.com/watch?v=SKBG1sqdyIU
https://arxiv.org/abs/2308.03688
https://github.com/lmarena/arena-hard-auto/tree/main?tab=readme-ov-file#leaderboard
https://arxiv.org/abs/2406.11939
https://arxiv.org/pdf/2406.03877
https://arxiv.org/pdf/2406.03877
https://arxiv.org/pdf/2406.03877
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://huggingface.co/spaces/bigcode/bigcodebench-leaderboard
https://arcprize.org/arc-agi
https://chat.lmsys.org/
https://arxiv.org/abs/2306.05685
https://arxiv.org/pdf/2411.04872
https://www.youtube.com/watch?v=SKBG1sqdyIU
https://arxiv.org/pdf/2411.04872
https://www.youtube.com/watch?v=SKBG1sqdyIU
https://huggingface.co/spaces/gaia-benchmark/leaderboard
https://huggingface.co/spaces/gaia-benchmark/leaderboard
https://ai.meta.com/research/publications/gaia-a-benchmark-for-general-ai-assistants/
https://arxiv.org/pdf/2311.12022
https://arxiv.org/pdf/2311.12022
https://arxiv.org/pdf/2311.12022
https://www.youtube.com/watch?v=SKBG1sqdyIU
https://arxiv.org/pdf/2311.12022.pdf
https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k
https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k
https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k
https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k
https://arxiv.org/pdf/2110.14168.pdf
https://arxiv.org/pdf/2110.14168.pdf
https://arxiv.org/abs/2410.02694
https://arxiv.org/abs/2410.02694
https://arxiv.org/abs/2410.02694
https://arxiv.org/pdf/2501.14249
https://arxiv.org/pdf/2501.14249
https://paperswithcode.com/sota/code-generation-on-humaneval
https://arxiv.org/abs/2107.03374v2
https://arxiv.org/pdf/1611.05358v2
https://arxiv.org/pdf/1611.05358v2
https://paperswithcode.com/sota/automatic-speech-recognition-on-lrs2
https://paperswithcode.com/sota/automatic-speech-recognition-on-lrs2
https://arxiv.org/pdf/1611.05358v2
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15. MATH: Data on MATH was taken from the MATH 27. VAB: Data on VisualAgentBench (VAB) was taken
Papers With Code leaderboard in February 2025 from the VAB leaderboard in February 2025. To learn
and the 03-mini model launch. To learn more about more about VAB, please read the original paper.
MATH, please read the original paper. 28.VCR: Data on VCR was taken from the VCR

16. MixEval: Data on MixEval was taken from the MixEval leaderboard in February 2025. To learn more about
leaderboard in February 2025. To learn more about VCR, please read the original paper.

MixEval, please read the original paper. 29. WildBench: Data on WildBench was taken from the

17. MMLU: Data on MMLU was taken from the MMLU WildBench leaderboard in February 2025. To learn
Papers With Code leaderboard in February 2025. more about WildBench, please read the original
To learn more about MMLU, please read the original paper.
paper.

18. MMLU-Pro: Data on MMLU-Pro was taken from the
MMLU-Pro leaderboard in February 2025. To learn
more about MMLU-Pro, please read the original
paper.

19. MMMU: Data on MMMU was taken from the MMMU
leaderboard in February 2025. To learn more about
MMMU, please read the original paper.

20. MTEB: Data on Massive Text Embedding Benchmark
(MTEB) was taken from the MTEB leaderboard in
February 2025. To learn more about MTEB, please
read the original paper.

21. MVBench: Data on MVBench was taken from the
MVBench leaderboard in February 2025. To learn
more about MVBench, please read the original paper.

22. PlanBench: Data on PlanBench was taken from the
PlanBench paper in February 2025. To learn more
about PlanBench, please read the original paper.

23. RE-Bench: Data on RE-Bench was taken from the RE-
Bench paper in February 2025. To learn more about
RE-Bench, please read the original paper

24. RLBench: Data on RLBench was taken from the
RLBench Papers With Code leaderboard in February
2025. To learn more about RLBench, please read the
original paper.

25. Ruler: Data on Ruler was taken from the Ruler
repository in February 2025. To learn more about
Ruler, please read the original paper.

26. SWE-bench: Data on SWE-bench was taken from
the SWE-bench leaderboard in February 2025.
To learn more about SWE-bench, please read the
original paper.
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https://paperswithcode.com/sota/math-word-problem-solving-on-math
https://paperswithcode.com/sota/math-word-problem-solving-on-math
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2103.03874v2
https://arxiv.org/abs/2406.06565
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://arxiv.org/pdf/2009.03300v3.pdf
https://arxiv.org/pdf/2009.03300v3.pdf
https://huggingface.co/spaces/TIGER-Lab/MMLU-Pro
https://arxiv.org/pdf/2406.01574
https://arxiv.org/pdf/2406.01574
https://arxiv.org/abs/2311.16502
https://huggingface.co/spaces/mteb/leaderboard
https://arxiv.org/pdf/2210.07316
https://huggingface.co/spaces/OpenGVLab/MVBench_Leaderboard
https://arxiv.org/abs/2311.17005
https://arxiv.org/pdf/2409.13373
https://openreview.net/forum?id=YXogl4uQUO
https://arxiv.org/pdf/2411.15114
https://arxiv.org/pdf/2411.15114
https://arxiv.org/pdf/2411.15114
https://paperswithcode.com/sota/robot-manipulation-on-rlbench
https://arxiv.org/pdf/1909.12271v1
https://arxiv.org/abs/2404.06654
https://www.swebench.com/
https://arxiv.org/abs/2310.06770
https://arxiv.org/pdf/2408.06327
https://arxiv.org/pdf/2408.06327
https://visualcommonsense.com/leaderboard/
https://visualcommonsense.com/leaderboard/
https://arxiv.org/abs/1811.10830
https://huggingface.co/spaces/allenai/WildBench
https://allenai.github.io/WildBench/WildBench_paper.pdf
https://allenai.github.io/WildBench/WildBench_paper.pdf
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Conference Submissions Analysis
For the analysis on responsible Al-related conference
submissions, the Al Index examined the number of
responsible Al-related academic submissions at the following
conferences: AAAI AIES, FAccT, ICML, ICLR, and NeurlPS.
Specifically, the team scraped the conference websites or

repositories of conference submissions for papers containing
relevant keywords indicating they could fall into a particular
responsible Al category. The papers were then manually
verified by a human team to confirm their categorization.
It is possible that a single paper could belong to multiple
responsible Al categories.

The keywords searched include:

Fairness and bias: algorithmic fairness, bias detection, bias
mitigation, discrimination, equity in Al, ethical algorithm
design, fair data practices, fair ML, fairness and bias, group
fairness, individual fairness, justice, nondiscrimination,

representational fairness, unfair, unfairness.

Privacy and data governance: anonymity, confidentiality,
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data breach, data ethics, data governance, data integrity,
data privacy, data protection, data transparency, differential
privacy, inference privacy, machine unlearning, privacy by
design, privacy-preserving, secure data storage, trustworthy
data curation.

Security: adversarial attack, adversarial learning, Al incident,
attacks, audits, cybersecurity, ethical hacking, forensic
analysis, fraud detection, red teaming, safety, security,
security ethics, threat detection, vulnerability assessment.

Transparency and explainability: algorithmic transparency,
audit, auditing, causal reasoning, causality, explainability,
explainable Al, explainable models, human-understandable
decisions, interpretability, interpretable models, model
explainability, outcome explanation, transparency, xAl.

Accenture Global State of
Responsible Al Survey

Researchers from Stanford conducted the second iteration of
the Global State of Responsible Al survey in collaboration with
Accenture. Responses from 1,500 organizations, each with
total revenues of at least $500 million, were collected from
20 countries and 19 industries. The survey was conducted in
January—February 2025. The objective of the Global State
of Responsible Al survey was to understand the challenges
of adopting RAI principles and practices and to allow for a
comparison of organizational and operational RAI activities

across 10 dimensions over time.

The survey covers a total of 10 RAI dimensions: reliability;
privacy and data governance; fairness and nondiscrimination;
transparency and explainability; human interaction; societal
and environmental well-being; accountability; leadership/
principles/culture; lawfulness and compliance; and
organizational governance. Details about the methodology

can be found here.
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McKinsey Responsible Al Survey
A recent survey by McKinsey & Company of more than
750 leaders across 38 countries provides insights into the
current state of RAIl in enterprises. These leaders represent
various industries, from technology to healthcare, and
include professionals from legal, data/Al, engineering,
risk, and finance roles. Leaders were asked about their
organization’s experience with RAI and assessed using the
McKinsey RAI Maturity Model, a responsible Al framework
that encompasses four dimensions of RAl—strategy, risk
management, data and technology, and operating model—
with 21 subdimensions. RAI maturity was ranked across four
levels, ranging from the development of foundational RAI
practices to having a comprehensive and proactive program
in place.
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International Federation of
Robotics (IFR)

Data presented in the Robot Installations section was sourced
from the World Robotics 2024 report.

Lightcast

Prepared by Vishy Kamalapuram and Elena Magrini

Lightcast delivers job market analytics that empower
employers, workers, and educators to make data-driven
decisions. The company’s artificial intelligence technology
analyzes hundreds of millions of job postings and real-
life career transitions to provide insight into labor market
patterns. This real-time strategic intelligence offers crucial
insights, such as what jobs are most in demand, the specific
skills employers need, and the career directions that offer
the highest potential for workers. For more information, visit

https:/lightcast.io.

Job Postings Data

To support these analyses, Lightcast mined its dataset of
millions of job postings collected since 2010. Lightcast
collects postings from over 51,000 online job sites to
develop a comprehensive, real-time portrait of labor market
demand. It aggregates job postings, removes duplicates,
and extracts data from job postings text. This includes
information on job title, employer, industry, and region,
as well as required experience, education, and skills.

Job postings are useful for understanding trends in the labor
market because they allow for a detailed, real-time look at
the skills employers seek. To assess the representativeness of
job postings data, Lightcast conducts a number of analyses
to compare the distribution of job postings to the distribution
of official government and other third-party sources in the

1 https:/lightcast.io/open-skills
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United States. The primary source of government data on U.S.
job postings is the Job Openings and Labor Turnover Survey
(JOLTS) program, conducted by the Bureau of Labor Statistics.
Based on comparisons between JOLTS and Lightcast, the
labor market demand captured by Lightcast data represents
over 99% of the total labor demand. Jobs not posted online
are usually in small businesses (e.g., “Help Wanted” signs in
restaurant windows) and union hiring halls.

Measuring Demand for Al

To measure the demand by employers of Al skills, Lightcast
uses its skills taxonomy of over 33,000 skills.! These skills are
organized hierarchically in over 400 skills clusters and 32
skills categories. The list of Al skills from Lightcast are shown
below, with associated skills clusters. For the purposes of this
report, all skills below were considered Al skills. A posting was
considered an Al job if it mentioned any of these skills in the
text of the listing.

Al ethics, governance, and regulation: ethical Al, data
sovereignty, Al security, artificial intelligence risk.

Artificial intelligence: agentic systems, Al/ML inference,
AlOps (artificial
personalization, Al testing, applications of artificial intelligence,

intelligence for IT operations), Al
artificial general intelligence, artificial intelligence, artificial
intelligence development, Artificial Intelligence Markup
Language (AIML), artificial intelligence systems, automated
data cleaning, Azure Cognitive Services, Baidu, cognitive
automation, cognitive computing, computational intelligence,
Cortana, Data Version Control (DVC), Edge Intelligence,
embedded Al, expert systems, explainable Al (XAl), intelligent
control, intelligent systems, interactive kiosk, IPSoft Amelia,
knowledge distillation, knowledge engineering, knowledge-
based configuration, knowledge-based systems, knowledge

representation, multi-agent systems, neuro-symbolic Al,



https://ifr.org/img/worldrobotics/Press_Conference_2024.pdf
http://www.lightcast.io
https://lightcast.io/open-skills
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Open Neural Network Exchange (ONNX), OpenAl Gym,
operationalizing Al, PineCone, Qdrant, reasoning systems,
swarm intelligence, synthetic data generation, Watson
Conversation, Watson Studio, Weka Weaviate.

Autonomous driving: advanced driver-assistance systems,
autonomous cruise control systems, autonomous system,
autonomous vehicles, dynamic routing, guidance navigation
and control systems, light detection and ranging (LiDAR),
object tracking, OpenCV, path analysis, path finding, remote
sensing, scene understanding, unmanned aerial systems
(UAS).

Generative Al: Adobe Sensei, ChatGPT, CrewAl, DALL-E
image generator, generative adversarial networks, generative
Al agents, generative artificial intelligence,Google Bard,
image inpainting, image super-resolution, LangGraph,
large language modeling, Microsoft Copilot, multimodal
learning, multimodal models, prompt engineering, retrieval-
augmented generation, Stable Diffusion, text summarization,
text to speech (TTS), variational autoencoders (VAEs).

Machine learning: AdaBoost (adaptive boosting), adversarial
machine learning, Apache MADIib, Apache Mahout, Apache
SINGA, Apache Spark, association rule learning, attention
mechanisms, AutoGen, automated machine learning,
autonomic computing, AWS SageMaker, Azure Machine
Learning, bagging techniques, Bayesian belief networks,
Boltzmann Machine, boosting, Chi-Squared Automatic
Interaction Detection (CHAID), Classification and Regression
Tree (CART), cluster analysis, collaborative filtering, concept
drift detection, confusion matrix, cyber-physical systems,
Dask (Software), data classification, Dbscan, decision
models, decision-tree learning, dimensionality reduction,
distributed machine learning, Dlib (C++ library), embedded
intelligence, ensemble methods, evolutionary programming,
expectation maximization algorithm, feature engineering,
feature extraction, feature learning, feature selection,
federated learning, game Al, Gaussian process, genetic
algorithm, Google AutoML, Google Cloud ML Engine,
gradient boosting, gradient boosting machines (GBM), H20.
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ai, hidden Markov model, hyperparameter optimization,
incremental learning, inference engine, k-means clustering,
kernel methods, Kubeflow, LIBSVM, loss functions, machine
learning, machine learning algorithms, machine learning
methods, machine learning model monitoring and evaluation,
machine learning model training, Markov chain, matrix
factorization, meta learning, Microsoft Cognitive Toolkit
(CNTK), MLflow, MLOps (machine learning operations),
mlpack (C++ library), ModelOps, Naive Bayes Classifier,
neural architecture compression, neural architecture search
(NAS), objective function, Oracle Autonomous Database,
Perceptron, Predictionio, predictive modeling, programmatic
media buying, Pydata, PyTorch (machine learning library),
PyTorch Lightning, Random Forest Algorithm, recommender
systems, reinforcement learning, Scikit-Learn (Python
package), semi-uupervised learning, soft computing, sorting
algorithm, supervised learning, support vector machines
(SVM), t-SNE (t-distributed Stochastic Neighbor Embedding),
test datasets, topological data analysis (TDA), Torch (machine
learning), training datasets, transfer learning, transformer
(machine learning model), unsupervised learning, Vowpal
Wabbit, Xgboost, Theano (software).

Natural language processing: Al copywriting, Amazon
Alexa, Amazon Textract, ANTLR, Apache OpenNLP,
BERT (NLP Model), chatbot, computational linguistics,
conversational Al, DeepSpeech, dialog systems, fastText,
fuzzy logic, handwriting recognition, Hugging Face (NLP
framework), Hugging Face Transformers, intelligent agent,
intelligent virtual assistant, Kaldi, language model, latent
Dirichlet allocation, Lexalytics, machine translation, Microsoft
LUIS, natural language generation (NLG), natural language
processing (NLP), natural language programming, natural
language toolkits, natural language understanding (NLU),
natural language user interface, nearest neighbour algorithm,
Nuance Mix, optical character recognition (OCR), screen
reader, semantic analysis, semantic interpretation for speech
recognition, semantic kernel, semantic parsing, semantic
search, sentence transformers, sentiment analysis, Seq2Seq,
Shogun, small language model, speech recognition, speech
recognition software, speech synthesis, statistical language
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acquisition, summarization methods, text mining, text
retrieval systems, text to speech (TTS), tokenization, Vespa,
voice assistant technology, voice interaction, voice user
interface, word embedding, Word2Vec models.

neural
Caffe2,
Chainer (Deep Learning Framework), convolutional neural

Neural networks: Apache MXNet, artificial

networks, autoencoders, Caffe (framework),
networks (CNN), Cudnn, deep learning, deep learning
methods, Deeplearning4j, deep reinforcement learning
(DRL), evolutionary acquisition of neural topologies, Fast.
Al, graph neural networks (GNNs), Keras (neural network
library), Long Short-Term Memory (LSTM), neural ordinary
differential equations, OpenVINO, PaddlePaddle, Pybrain,
recurrent neural network (RNN), reinforcement learning (RL),
residual networks (ResNet), sequence-to-sequence models
(seg2seq), spiking neural networks, TensorFlow.

Robotics: advanced robotics, bot framework, cognitive
robotics, meta-reinforcement learning, motion planning,
Nvidia Jetson, OpenAl Gym environments, reinforcement
learning from human feedback (RLHF), robot framework,
robot operating systems, robotic automation software,
robotic liquid handling systems, robotic programming, robotic
systems, servomotor, SLAM algorithms (Simultaneous
Localization and Mapping).

Visual image recognition: 3D reconstruction, activity
recognition, computer vision, contextual image classification,
Deck.gl, digital image processing, digital twin technology, eye
tracking, face detection, facial recognition, general-purpose
computing on graphics processing units, gesture recognition,
image analysis, image captioning, image matching, image
recognition, image segmentation, image sensor, ImageNet,
instance segmentation, machine vision, MNIST, motion
analysis, object recognition, OmniPage, pose estimation,
RealSense, thermal imaging analysis.
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LinkedIn

Prepared by Rosie Hood, Akash Kaura, and Mar Carpanelli

LinkedIn Data

This body of work represents the world seen through LinkedIn
data, drawn from the anonymized and aggregated profile
information of LinkedIn’s more than 1 billion members around
the world. As such, it is influenced by how members choose
to use the platform, which can vary based on professional,
social, and regional culture, as well as overall site availability
and accessibility. In publishing insights from LinkedIn’s
Economic Graph, LinkedIn aims to provide accurate statistics
while ensuring the privacy of LinkedIn’s members. As a result,
all data shows aggregated information for the corresponding
period following strict data quality thresholds that prevent
disclosing any information about specific individuals.

Country Sample

LinkedIn provides data on Argentina, Australia, Austria,
Belgium, Brazil, Canada, Chile, Costa Rica, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland, France, Germany,
Greece, Hong Kong SAR, Hungary, Iceland, India, Indonesia,
Ireland, Israel, Italy, Latvia, Lithuania, Luxembourg, Mexico,
Netherlands, New Zealand, Norway, Poland, Portugal,
Romania, Saudi Arabia, Singapore, Slovenia, South Africa,
South Korea, Spain, Sweden, Switzerland, Turkey, United
Arab Emirates, United Kingdom, United States, and Uruguay.

Skills

LinkedIn members self-report their skills on their LinkedIn
profiles. Currently, more than 41,000 distinct, standardized
skills are identified by LinkedIn.

LinkedIn categorizes Al skills into two mutually exclusive
groups: “Al Engineering” and “Al Literacy.” Broadly speaking,
Al Engineering skills refer to the technical expertise and
practical competencies required to design, develop,
deploy, and maintain artificial intelligence systems, and Al
Literacy skills refer to the knowledge, abilities, and critical
thinking competencies needed to understand, evaluate, and
effectively interact with artificial intelligence technologies.
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As skills are ever evolving, we maintain and refresh these
classifications on a periodic basis. For a list of skills included
in this analysis, please see LinkedIn’s Al skills List below.

Industry

LinkedIn’s industry taxonomy is a collection of entities
that share economic activities and contribute to a specific
product or service. An industry represents the products or
services that a company offers or sells. LinkedIn analyzes
the following industries in the context of Al: education;
financial services; manufacturing; professional services; and
technology, information, and media.

Gender

LinkedIn recognizes that some LinkedIn members identify
beyond the traditional gender constructs of “man” and
“woman.” If not explicitly self-identified, LinkedIn has inferred
the gender of members included in this analysis either by the
pronouns used on their LinkedIn profiles or on the basis of
first names. Members whose gender could not be inferred as
either male or female were excluded from any gender analysis.
Please note that LinkedIn filtered out countries where their
gender attribution algorithm did not have sufficient coverage.

Al Jobs or Occupations

LinkedIn member titles are standardized and grouped into
over 16,000 occupations. These are not sector or country
specific. An Al job requires Al skills to perform the job.
Examples of such occupations include (but are not limited to):
machine learning engineer, artificial intelligence specialist,
data scientist, and computer vision engineer.

Al Talent

A LinkedIn member is considered Al talent if they have
explicitly added at least two Al skills to their profile and/or
they are or have been employed in an Al job.
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METHODOLOGIES

1. Top Al Skills
These are the Al skills most frequently added by LinkedIn
members from 2015 onward.

Interpretation: The most added Al Engineering skills globally
are machine learning, Al, and deep learning.

2. Fastest Growing Al Skills

The year-over-year growth rate for Al skills most frequently
added by all members. Please note that LinkedIn implements
thresholds to skill add volumes in the most recent year, which
are set at the 50th percentile of the most recent year’s Al skill
adds distribution by country.

Interpretation: The fastest growing Al Engineering skills
globally are custom GPTs, Al productivity, and Al agents.

3. Al Talent Concentration

The counts of Al talent are used to calculate talent
concentration metric. In other words, to calculate the country-
level Al talent concentration, LinkedIn uses the counts of Al
talent in a particular country divided by the counts of LinkedIn
members in that country. Note that concentration metrics
may be influenced by LinkedIn coverage in these countries
and should be utilized with caution.

Interpretation: Al talent with Al Engineering skills represents
0.78% of LinkedIn members in the United States.

4. Relative Al Talent Hiring Rate YoY Ratio

The LinkedIn hiring rate is a measure of hires normalized by
LinkedIn membership. It is computed as the percentage of
LinkedIn members who added a new employer in the same
period the job began, divided by the total number of LinkedIn
members in the corresponding location.

The Al hiring rate is computed using the overall hiring rate
methodology, but it only considers members classified as Al
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talent. The relative Al talent hiring rate YoY ratio is the year-
over-year change in the Al hiring rate relative to the overall
hiring rate in the same country. LinkedIn shares a 12-month

moving average.

Interpretation: In the United States, the ratio of Al talent hiring
relative to overall hiring has grown 24.7% year over year.

5. Skill Penetration

SKILLS GENOME

For any category (occupation, country, industry, etc.), the
skills genome is an ordered list (a vector) of the 50 skills most
characteristic of that category. These most characteristic
skills are determined using a TF-IDF algorithm, which down-
ranks ubiquitous skills that add little information about that
specific entity (e.g., Microsoft Word) and up-ranks skills
unique to that specific entity (e.g., artificial intelligence).
Further details are available at LinkedIn’s skills genome and
the LinkedIn—World Bank Methodology note.

As an example, Table 1 details the skills genome of the
technology, information, and media industry in the United
States in 2024, displaying the top 10 skills ranked by TF-IDF.

Skill name TF-IDF skill rank

Amazon Web Services (AWS) 1
Software as a Service (SaaS) 2
Artificial intelligence (Al) 3
Python (programming language) 4
Go-to-market strategy 5
Customer success 6
Large language models (LLM) 7
Salesforce.com 8
SQL 9
Generative Al 10
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Al SKILLS PENETRATION
The aim of this indicator is to measure the intensity of Al skills
in a given category using the following methodology:

e LinkedIn computes frequencies for all self-added skills
by LinkedIn members in a given entity (occupation,
industry, etc.) from 2015 onward.

e LinkedIn reweights skill frequencies using a TF-IDF
model to get the top 50 most representative skills in
that entity. These 50 skills compose the “skill genome”
of that entity.

e LinkedIn computes the share of skills that belong to the
Al skill group out of the top skills in the selected entity.

Interpretation: The Al skills penetration rate signals the
prevalence of Al skills across occupations, or the intensity
with which LinkedIn members utilize Al skills in their jobs. For
example, the top 50 skills for the occupation of engineer are
calculated based on the weighted frequency with which they
appear in LinkedIn members’ profiles. If four of the skills that
engineers possess belong to the Al skills group, this measure
indicates that the penetration of Al skills is estimated to be
8% among engineers (i.e., 4/50).

RELATIVE Al SKILLS PENETRATION

To allow for skills penetration comparisons across countries,
the skills genomes are calculated, and a relevant benchmark
is selected (e.g., a global average). A ratio is then constructed
between a country and the benchmark’s Al skills penetrations,
controlling for occupations.

Interpretation: If a country has a relative Al skills penetration
of 1.5, that means Al skills are 1.5 times as frequent as in the
benchmark, for an overlapping set of occupations.

GLOBAL COMPARISON

For cross-country comparisons, LinkedIn presents the
relative penetration rate of Al skills, measured as the sum of
the penetration of each Al skill across occupations in a given
country, divided by the average global penetration of Al skills

across the overlapping occupations in a sample of countries.
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Interpretation: A relative penetration rate of 2 means the
average penetration of Al skills in that country is two times
the global average across the same set of occupations.

GLOBAL COMPARISON: BY INDUSTRY

The relative Al skills penetration by country for a given
industry provides an in-depth sectoral decomposition of Al
skills penetration across industries and countries.

Interpretation: A country’s relative Al skill penetration rate
of 2 in the education sector means the average penetration of
Al skills in that country is two times the global average across
the same set of occupations in that sector.

GLOBAL COMPARISON: BY GENDER

The relative Al skills penetration by gender provides a cross-
country comparison of Al skills penetrations within a gender.
Since the global averages are distinct for each gender, this
metric should only be used to compare country rankings
within each gender, not for cross-gender comparisons within
countries.

Interpretation: A country’s Al skills penetration for women
of 1.5 means that female members in that country are 1.5
times more likely to list Al skills than the average female
member in all countries pooled together across the same set
of occupations that exist in the country-gender combination.

GLOBAL COMPARISON: ACROSS GENDERS

The relative Al skills penetration across genders allows
for cross-gender comparisons within and across countries
globally, since LinkedIn compares a country’s Al skills
penetration by gender to the same global average regardless
of gender.

6. Female Representation in Al
This refers to the share of Al talent occupied by women.

Interpretation: Female representation within Al talent with
Al Engineering skills is 30.5% globally.
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7. Al Talent Migration

Data on migration comes from the World Bank Group-
LinkedIn “Digital Data for Development” partnership (see
https:/linkedindata.worldbank.org/ and Zhu et al. (2018)).
LinkedIn migration rates are derived from the self-identified
locations of Linkedln member profiles. For example, when a
LinkedIn member updates their location from Paris to London,
this is counted as a migration. Migration data is available from
2019 onward.

LinkedIn data provides insights to countries on Al talent
gained or lost due to migration trends. Al talent migration is
considered for all members with Al skills/holding Al jobs at
time “t” for country A as the country of interest and country
B as the source of inflows and destination for outflows. Thus,
net Al talent migration between country A and country B is
calculated as:

Net Al Talent flowsg,,
Member count,

Net Al Talent Migrationg,, =

Net flows are defined as total arrivals minus departures
within a given time period. LinkedIn membership varies
between countries, which can prove challenging when
interpreting absolute movements of members from one
country to another. Migration flows are therefore normalized
with respect to each country. For example, for country A, all
absolute net flows into and out of country A, regardless of
origin and destination countries, are normalized based on the
LinkedIn membership of country A at the end of each year
and multiplied by 10,000. Hence, this metric indicates relative
talent migration from all countries to and from country A.
Please note that minimum thresholds have been applied such
that transitions have a sufficient sample size.

Interpretation: The United States had a positive net flow of
Al talent relative to its membership size at 1.07 net flow per
10,000 members.

8. Career Transitions Into Al Jobs

LinkedIn considers the source occupations that feed Al
occupations, analyzing the share of transitions into Al
occupations pooled over a five-year period. Career transitions



https://linkedindata.worldbank.org/
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/827991542143093021/world-bank-group-linkedin-data-insights-jobs-skills-and-migration-trends-methodology-and-validation-results
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are computed by aggregating member-level job transitions
from one occupation to another occupation the member
has not previously held. LinkedIn excludes first occupations
added by new graduates and intra-occupation transitions.

Interpretation: In the United States, 26.9% of transitions into
Al engineer came from software engineer, followed by 13.3%
from data scientist.

THE LINKEDIN Al SKILLS LIST

Al Engineering
3D reconstruction, Al agents, Al productivity, Al strategy,
algorithm analysis, algorithm development, Amazon Bedrock,
Apache Spark ML, applied machine learning, artificial
intelligence (Al), artificial neural networks, association
rules, audio synthesis, autoencoders, automated clustering,
automated feature engineering, automated machine learning
(AutoML), automated reasoning, autoregressive models,
Azure Al Studio, Caffe, chatbot development, chatbots,
classification, cognitive computing, computational geometry,
computational intelligence, computational linguistics,
concept drift adaptation, conditional generation, conditional
image generation, convolutional neural networks (CNN),
custom GPTs, decision trees, deep convolutional generative
adversarial networks (DCGAN), deep convolutional neural
nNetworks (DCNN), deep learning, deep neural networks
(DNN), evolutionary algorithms, expert systems, facial
recognition, feature extraction, feature selection, fuzzy
logic, generative adversarial imitation learning, generative
adversarial networks (GANs), generative Al, generative
design optimization, generative flow models, generative
modeling, generative neural networks, generative
optimization, generative pre-training, generative query
networks (GQNs), generative replay memory, generative
synthesis, gesture recognition, Google Cloud AutoML, graph
embeddings, graph networks, hyperparameter optimization,
hyperparameter tuning, image generation, image inpainting,
image processing, synthesis,

image image-to-image

translation, information extraction, intelligent agents,

k-means clustering, Keras, knowledge discovery, knowledge
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representation and reasoning, LangChain, large language
model operations (LLMOps), large language models (LLM),
machine learning, machine learning algorithms, machine
translation, Microsoft Azure Machine Learning, MLOps,
model compression, model interpretation, model training,
music generation,nNatural language generation, natural
language processing (NLP), natural language understanding,
neural network architecture design, neural networks, NLTK,
object recognition, ontologies, OpenAl API, OpenCV, parsing,
pattern recognition, predictive modeling, probabilistic
generative models, probabilistic programming, prompt flow,
PyTorch, question answering, random forest, RapidMiner,
recommender systems, recurrent neural networks (RNN),
reinforcement learning, responsible Al, Scikit-Learn, semantic
technologies, semantic web, sentiment analysis, speech
recognition, Spring Al, statistical inference, style transfer,
StyleGAN, supervised learning, support vector machine
(SVM), synthetic data generation, TensorFlow, text analytics,
text classification, text generation, text mining, text-to-image
generation, Theano, time series forecasting, transformer
models, unsupervised learning, variational autoencoders
(VAEs), video generation, web mining, Weka, WordNet.

Al Literacy

Al Builder, Al prompting, Anthropic Claude, ChatGPT,
DALL-E, generative Al, Generative Al Studio, generative Al
tools, generative art, GitHub Copilot, Google Bard, Google
Gemini, GPT-3, GPT-4, LLaMA, Microsoft Copilot, Microsoft
Copilot Studio, Midjourney, multimodal prompting, prompt
engineering, Stable Diffusion.
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Quid

Quid insights prepared by Heather English and Hansen Yang

Quid uses its own in-house LLM and other smart search
features, as well as traditional Boolean query, to search for
focus areas, topics, and keywords within many datasets: social
media, news, forums and blogs, companies, patents, as well as
other custom feeds of data (e.g., survey data). Quid has many
visualization options and data delivery endpoints, including
network graphs based on semantic similarity, in-platform
dashboarding capabilities, and programmatic PostgreSQL
database delivery. Quid applies best-in-class Al and NLP to
reveal hidden patterns in large datasets, enabling users to
make data-driven decisions accurately, quickly, and efficiently.

Search, Data Sources, and Scope

Over 8 million global public and private company profiles
from multiple data sources are indexed to search across
company descriptions, while filtering and including metadata
ranging from investment information to firmographic
information, such as founding year, headquarter location, and
more. Company information is updated on a weekly basis.
The Quid algorithm reads a large amount of text data from
each document to make links between different documents
based on their similar language. This process is repeated at
an immense scale, which produces a network of different
clusters identifying distinct topics or focus areas. Trends are
identified based on keywords, phrases, people, companies,
and institutions that Quid identifies and other metadata that

is put into the software.
Data

Companies

Organization data is embedded from Capital IQ and
Crunchbase. These companies include every type of
organization (private, public, operating, operating as a
subsidiary, out of business) throughout the world. The
investment data includes private investments, M&A, public
offerings, minority stakes held by PE/ VCs, corporate venture
arms, governments, and institutions both within and outside
the United States. Some data is unavailable—for instance,
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when investors’ names or funding amounts are not disclosed.
Quid embeds Capital IQ data as a default and adds in data
from Crunchbase for the data points that are not captured in
Capital IQ. This not only yields comprehensive and accurate
data on all global organizations, but it also captures early-
stage startups and funding events data.

Search Parameters

Boolean query is used to search for focus areas, topics, and
keywords within the archived company database and within
their business descriptions and websites. Quid can filter
out the search results by HQ regions, investment amount,
operating status, organization type (private/ public), and
founding year. Quid then visualizes these companies by
semantic similarity. If there are more than 7,000 companies
from the search result, Quid selects the 7,000 most relevant
companies for visualization based on the language algorithm.
Boolean search: “artificial intelligence” or “Al” or “machine

learning” or “deep learning”

Companies

e Global Al and ML companies that have received
investments (private, IPO, M&A) from Jan. 1, 2014, to
Dec. 31, 2024.

e Global Al and ML companies that have received over
$1.5 million for the past 10 years (Jan. 1, 2014, to Dec.
31, 2024).

e Global data was also pulled for a generative Al query
(Boolean search: “generative Al” or “gen Al” OR
“generative artificial intelligence”) for companies that
have received over $1.5 million for the past 10 years
(Jan. 1, 2014, to Dec. 31, 2024).

Target Event Definitions

e Private investment: A private placement is a private
sale of newly issued securities (equity or debt) by a
company to a select investor or group of investors. The
stakes that buyers take in private placements are often
minority stakes (under 50%), although it is possible to
take control of a company through a private placement
as well, in which case the private placement would be
a majority stake investment.
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e Minority investment: These refer to minority stake
acquisitions in Quid, which take place when the buyer
acquires less than 50% of the existing ownership stake
in entities, asset products, and business divisions.

o M&A: This refers to a buyer acquiring more than
50% of the existing ownership stake in entities, asset
products, and business divisions.

McKinsey & Company

Data used in the “Corporate Activity” section was sourced
from two McKinsey global surveys: “The State of Al in Early
2024: Gen Al Adoption Spikes and Starts to Generate Value”
and “The State of Al: How Organizations Are Rewiring to
Capture Value.”

The first online survey of 2024 was in the field from Feb. 22
to March 5, and garnered responses from 1,363 participants
representing the full range of regions, industries, company
sizes, functional specialties, and tenures. Among the
respondents, 981 said their organizations had adopted Al in at
least one business function, and 878 said their organizations
were regularly using gen Al in at least one function.
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The second online survey of 2024 was in the field from July 16
to July 31, and garnered responses from 1,491 participants in
101 nations representing the full range of regions, industries,
company sizes, functional specialties, and tenures. Forty-two
percent of respondents said they work for organizations with
more than $500 million in annual revenues.

To adjust for differences in response rates, the data is weighted
by the contribution of each respondent’s nation to global GDP.

The Al Index also considered data from previous iterations of
the McKinsey survey. These include:

The State of Al in 2023: Generative Al’s Breakout Year

The State of Al in 2022—and a Half Decade in Review

The State of Al in 2021

The State of Al in 2020

Al Proves Its Worth, But Few Scale Impact (2019)

Al Adoption Advances, But Foundational Barriers Remain
(2018)



https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/featured-insights/artificial-intelligence/global-ai-survey-ai-proves-its-worth-but-few-scale-impact
https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain
https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain
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Benchmarks
1. MedQA: Data on MedQA was taken from the MedQA
Papers With Code leaderboard in February 2025. To learn

more about MedQA, please read the original paper.

Al-Driven Protein Science
Publications

The Al Index used Dimensions’ Al document search function
to measure the number of manuscripts published in a year.
The searches were restricted to the 2024 publication year
and the biological sciences category (987,717 publications).
Then a search was conducted for each key term, which had to
be present in both the title and the abstract. This requirement
limited the number of manuscripts returned that might
only have mentioned the key term in passing, rather than
describing research about the key term. Once the number
of manuscripts was identified, the percent of total biological
sciences manuscripts about each key term was calculated.

Image and Multimodal Al for
Scientific Discovery

The Al Index used Semantic Scholar and Google Scholar to
measure the number of manuscripts published from 2023 to
2025. A search was then performed for each key term (e.g.,

” o«

“foundation models,

» o«

microscopy,” “electron microscopy,”
“Huorescence microscopy,” “light microscopy”) with the
requirement that the terms be present in both the title
and the abstract. Furthermore, the search was refined to
strictly comply with the definition of a foundation model—
specifically, a model trained on vast datasets that can be

applied across a wide range of use cases. To this end, any
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model alleged to be a foundation model that had been
trained on fewer than 1 million data points or not evaluated on
multiple tasks was discarded.

FDA-Approved Al Medical
Devices

Data on FDA-approved Al medical devices was sourced
from the FDA website, which tracks artificial intelligence and
machine learning (Al/ML)—enabled medical devices.

Ethical Considerations

The Al Index used PubMedCentral’s APl to query for English-
language indexed articles published between Jan. 1, 2020,
and Dec. 31, 2024, using search terms regarding artificial
intelligence, medicine, and ethical issues. In order to obtain
only articles at the intersection of those three topics, the Al
Index further narrowed the articles to those with an abstract
including a keyword related to: (a) artificial intelligence, (b)
medicine, and (c) at least one ethical issue. After removing
preprints, retracted articles, and articles that failed to satisfy
the inclusion criteria, 2,916 articles remained. The Al Index
used the frequency of ethical issues mentioned in abstracts
across this pool of articles to conduct its analysis.

APl query:

(“artificial intelligence”[MeSH] OR “machine learning”[MeSH]
OR “deep learning”[All Fields] OR “AI”[All Fields] OR
“ML’[All Fields] OR “predictive analytics”[All Fields]) AND
((“ethics”[MeSH] OR “ethical implications”[All Fields] OR
“fair*”[All Fields] OR “unfair*”[All Fields] OR “bias”[All Fields]
OR “accountability”[All Fields] OR “transparency”[All Fields]
OR “explainability”[All Fields] OR “privacy”[All Fields] OR
“trustworthy AI”[All Fields]) OR (“bioethics”[MeSH] OR
“ELSI”[All Fields] OR “autonomy”[All Fields] OR “equity”[All
Fields] OR “equitab*”[All Fields] OR “justice”[All Fields] OR
“beneficence”[All Fields] OR “non-maleficence”[All Fields]
OR “independent review”[All Fields] OR “oversight”[All



https://paperswithcode.com/sota/question-answering-on-medqa-usmle
https://paperswithcode.com/sota/question-answering-on-medqa-usmle
https://paperswithcode.com/sota/question-answering-on-medqa-usmle
https://arxiv.org/abs/2009.13081v1
https://www.frontiersin.org/journals/research-metrics-and-analytics/articles/10.3389/frma.2018.00023/full
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
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Fields] OR “racis*”[All Fields] OR “prejud*”[All Fields] OR
“inequit*”[All  Fields] OR “community engagement”[All
Fields] OR “misuse”[All Fields] OR “dual use”[All Fields]))
AND (“medicine’[MeSH] OR “medical AI”[All Fields]
OR “clinical decision support”’[All Fields] OR “health
informatics”[All  Fields]) AND (2020/01/01’[PubDate]
“2024/12/31”[PubDate])

Date of search: 2/14/2025

Abstract inclusion criteria:

Therefore, includes only articles that discuss medicine,
artificial intelligence, and at least one ethical issue within the
abstract (N = 2,916).
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o Al keywords: “artificial intelligence,” “ Al,” “algorithm,”
“ML,” “machine learning,” “deep learning,” predictive
analytics.

e Medicine keywords: “medicine,” “medical,” “health,”
“healthcare.”

e Ethics keywords: “ethic*” “fairness,” “bias,”
“accountability,”  “transparency,”  “explainability,”
“privacy,” “trustworthy Al” “bioethics,” “ELSI,
“autonomy,” “equit*,” “justice,” “beneficence,” “non-
maleficence,” “independent review,” “oversight,”
“racism,” “inequit*,” community engagement, misuse,
dual use.
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Global Al Mentions

For mentions of Al in Al-related legislative proceedings
around the world, the Al Index performed searches for the
keyword “artificial intelligence,” in respective languages, on
the websites of congresses or parliaments in 75 geographic
areas, usually under sections named “minutes,” “hansard,” etc.
Mentions were counted by session, so multiple mentions of
“artificial intelligence” in the same legislative session counted
as one mention. The Al Index team surveyed the following
databases:

Andorra, Armenia, Australia, Azerbaijan, Barbados, Belgium,

Bermuda, Brazil, Canada, Cayman lIslands, China,' Czech

Global Legislation Records on Al

For Al-related bills passed into laws, the Al Index performed
searches for the keyword “artificial intelligence,” in respective
languages and in the full text of bills, on the websites of
congresses or parliaments in 116 geographic areas. Note that
only laws passed by state-level legislative bodies and signed into
law (e.g., by presidents or received royal assent) from 2016 to
2024 are included. Laws that were approved but then repealed
are not included in the analysis. For laws where Al-related
provisions were added or amended after initial enactment,
the Al Index uses the year of inclusion rather than the original
passage year, when relevant. Future Al Index reports hope to
include analysis on other types of legal documents, such as
regulations and standards, adopted by state- or supranational-
level legislative bodies, government agencies, etc.

The Al Index team surveyed databases for the following
geographic areas:

Algeria, Andorra, Antigua and Barbuda, Argentina, Armenia,

Republic, Denmark, Dominican Republic, Ecuador, El

Salvador, Estonia, Fiji, Finland, France, Germany, Gibraltar,

Australia, Austria, Azerbaijan, The Bahamas, Bahrain,

Bangladesh, Barbados, Belarus, Belgium, Belize, Bermuda,

Greece, Hong Kong, Iceland, India, Ireland, Isle of Man,

Bhutan, Bolivia, Brazil, Brunei, Bulgaria, Cameroon, Canada,

Italy, Japan, Kenya, Kosovo, Latvia, Lesotho, Liechtenstein,

Chile, China, Croatia, Cuba, Curacao, Cyprus, Czech

Luxembourg, Macao SAR, China, Madagascar, Malaysia,

Republic, Denmark, Estonia, Faroe Islands, Fiji, Finland, France,

Maldives, Malta, Mauritius, Mexico, Moldova, Netherlands,

Germany, Gibraltar, Greece, Greenland, Grenada, Guam,

New Zealand, Northern Mariana Islands, Norway, Pakistan,

Guatemala, Guyana, Hong Kong, Hungary, Iceland, India, Iraq,

Panama, Papua New Guinea, Philippines, Poland, Portugal,

Ireland, Isle of Man, Israel, Italy, Jamaica, Japan, Kazakhstan,

Romania, Russia, San Marino, Seychelles, Sierra Leone,

Kenya, Kiribati, Republic of Korea, Kosovo, Kyrgyz Republic,

Singapore, Slovenia, South Africa, South Korea, Spain, Sri

Lanka, Sweden, Switzerland, Tanzania, Trinidad and Tobago,

Latvia, Liechtenstein, Lithuania, Luxembourg, Macao SAR

China, Malawi, Malaysia, Malta, Mauritius, Mexico, Monaco,

Ukraine, United Kingdom, United States, Uruguay, Zambia,

Montenegro, Morocco, Mozambique, Nauru, Netherlands,

Zimbabwe

New Zealand, Northern Marina lIslands, Norway, Panama,

Philippines, Poland, Portugal, Romania, Russia, Samoa,

Saudi Arabia, Serbia, Seychelles, Sierra Leone, Singapore,

1The National People’s Congress is held once per year and does not provide full legislative proceedings. Hence, the counts included in the analysis searched mentions of “artificial
intelligence” in the only public document released from the congressional meetings, the Report on the Work of the Government, delivered by the premier.
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Slovak Republic, Slovenia, South Africa, Spain, St. Kitts and

Nevis, Suriname, Sweden, Switzerland, Tajikistan, Tanzania,

Togo, Tongo, Turkey, Tuvalu, Uganda, Ukraine, United Arab

Emirates, United Kingdom, United States, Uruguay, Vietnam,

Yemen, Zambia, Zimbabwe

US State-Level Al Legislation

For Al-related bills passed into law, the Al Index performed

searches for the keyword “artificial intelligence” in the full
text of bills on the websites of all 50 U.S. states. Bills are only
counted as passed into law if the keyword appears in the final
version of the bill, not just the introduced version. Note that
only laws passed from 2015 to 2024 are included. The count
for proposed laws includes both laws that were proposed
that were passed and laws that were proposed that have
not been passed yet, or are now inactive. The Al Index team
surveyed the following databases:

Alabama, Alaska, Arizona, Arkansas, California, Colorado,

Connecticut, Delaware, Florida, Georgia, Hawaii, ldaho,

Illinois, Indiana, lowa, Kansas, Kentucky, Louisiana, Maine,

Maryland, Massachusetts, Michigan, Minnesota, Mississippi,

Missouri, Montana, Nebraska, Nevada, New Hampshire, New

Jersey, New Mexico, New York, North Carolina, North Dakota,

Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South

Carolina, South Dakota, Tennessee, Texas, Utah, Vermont,

Virginia, Washington, West Virginia, Wisconsin, Wyoming

For a more thorough review, the Al Index also included Al-
related state laws listed on the Multistate Al state legislation

tracker, even if they did not specifically reference “artificial
intelligence” as a keyword.

US Al Regulation

This section examines Al-related regulations enacted by
U.S. regulatory agencies from 2016 to 2024, analyzing the
total number of regulations and their originating agencies.
To compile this data, the Al Index conducted a keyword
search for “artificial intelligence” on the Federal Register, a
comprehensive repository of government documents drawn
from over 436 agencies and nearly every branch of the U.S.
government.

O Table of Contents

9 Appendix

| I Artificial Intelligence
HI Index Report 2025

US Committee Mentions

To research trends on the United States’ committee mentions
of Al, the following search was conducted:

Website: Congress.gov

Keyword: artificial intelligence

Filters: Committee Reports

Public Investment in Al

The Al Index analyzed government Al spending across
European countries and the United States, focusing on regions
where data is more accessible. It is important to note that
this analysis may not fully represent all countries or regions,
as the availability and quality of data can vary significantly.
Additionally, while this analysis includes data on government
contracts from various countries, it only covers grant-level
spending for the United States. This discrepancy is the result
of challenges in collecting comparable grant data from other
countries and regions, such as the European Union and China.
Nevertheless, the U.S. case illustrates that a substantial
portion of government spending on Al occurs through grants.
Coverage will expand in future iterations of the Al Index as
more data becomes available, but discrepancies and gaps
in the existing data may affect the comprehensiveness and
accuracy of the findings.

Data Sources

For European countries, the Al Index collected public tender
data from Tenders Electronic Daily (TED) (Publications Office
of the European Union, 2024)—the online supplement to

the official journal of the EU dedicated to European public
procurement. While contracts are available in various formats,
the most detailed data comes from bulk XML downloads,
which include comprehensive information on tendering
procedures, issuing entities, awarded contractors, lot values,
descriptions, award dates, and common procurement
vocabulary (CPV) codes. TED publication is governed by
EU law thresholds: Tenders above specific monetary values,
deemed of cross-border interest, must be published on
TED. However, some countries also report below-threshold
procurements, leading to variations in coverage across

countries.



https://www.slov-lex.sk/domov
http://www.pisrs.si/Pis.web/
http://www.gov.za
https://www.boe.es/buscar/legislacion_ava.php
https://aglcskn.info/
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https://www.dna.sr/wetgeving/
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https://elaws.moj.gov.ae/laws/search?key=AL1
https://elaws.moj.gov.ae/laws/search?key=AL1
https://www.legislation.gov.uk/
https://www.congress.gov/
https://www.parlamento.gub.uy/
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https://www.akleg.gov/basis/Home/BillsandLaws
https://apps.azleg.gov/BillStatus/BillOverview
https://www.arkleg.state.ar.us/Bills/Search?ddBienniumSession=2019%2F2019R
https://leginfo.legislature.ca.gov/
http://leg.colorado.gov/bills
https://search.cga.state.ct.us/r/adv/
https://legis.delaware.gov/
https://www.myfloridahouse.gov/Sections/Bills/bills.aspx
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https://legislature.idaho.gov/
https://www.ilga.gov/default.asp
https://iga.in.gov/search
https://www.legis.iowa.gov/
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https://www.legis.la.gov/Legis/BillSearch.aspx?sid=243ES
https://legislature.maine.gov/bills/default_ps.asp?snum=0&PID=1456
https://mgaleg.maryland.gov/mgawebsite/
https://malegislature.gov/
http://www.legislature.mi.gov/(S(ichgts3prferjuinoxyhaaow))/mileg.aspx?page=home
https://www.leg.mn.gov/
http://www.legislature.ms.gov/legislation/previous-sessions/
https://www.mo.gov/government/legislative-branch/
https://leg.mt.gov/#start=0&query=2023&collection=2023 Bills
https://nebraskalegislature.gov/
https://www.leg.state.nv.us/
https://www.gencourt.state.nh.us/
https://www.njleg.state.nj.us/
https://www.njleg.state.nj.us/
https://www.nmlegis.gov/Search
https://nyassembly.gov/leg/?sh=advanced
https://www.ncleg.gov/
https://www.ndlegis.gov/
https://www.legislature.ohio.gov/
http://www.oklegislature.gov/tsrs_measures.aspx
https://www.oregonlegislature.gov/
https://www.legis.state.pa.us/cfdocs/legis/home/bills/
https://webserver.rilegislature.gov/search/
https://www.scstatehouse.gov/
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https://sdlegislature.gov/
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https://legislature.vermont.gov/
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https://legis.wisconsin.gov/
https://www.wyoleg.gov/Legislation/searchKeyword
https://www.multistate.ai/artificial-intelligence-ai-legislation
https://www.multistate.ai/artificial-intelligence-ai-legislation
https://www.federalregister.gov/
http://congress.gov
https://ted.europa.eu/en/
https://www.zotero.org/google-docs/?Sm10o0
https://www.zotero.org/google-docs/?Sm10o0
https://single-market-economy.ec.europa.eu/single-market/public-procurement/legal-rules-and-implementation/thresholds_en
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For the United Kingdom, data sources include TED, Find a
Tender, Contracts Finder, and Contracts Finder Archive.

Data from Scotland and Wales were accessed via the APls
of their procurement websites, while Northern Ireland does
not offer this service, necessitating its exclusion from the
analysis and potentially leading to an underestimation of
public investments in Al for the U.K. Due to API limitations
restricting historical data access, the Al Index utilized the
Open Contracting Partnership’s data registry via Kingfisher

Collect to obtain comprehensive data for Scotland and Wales.

Data for the United States was sourced from the publicly
accessible USAspending platform, an official repository
that facilitates bulk downloads of information related to
contract award notices and grant data. While this dataset
encompasses a longer time frame than the TED dataset, it
is important to note that data quality can vary. Additionally,
a study by the U.S. Government Accountability Office (GAO,
2023) found that 49 agencies, including 25 in the executive
branch, did not report data to USAspending, accounting for
over $5 billion in net outlays for fiscal year 2022.

Data Processing

Processing TED data posed significant challenges due to
inconsistent storage of contract descriptions, which varied
by XML tag names based on release time and procurement
type. Some files contained aggregated descriptions while
others detailed each awarded contract lot. To capture
comprehensive information, the main descriptions of each
competition call were combined with partial descriptions

when available.

The linguistic diversity in data from different countries
required translation of all texts into English using the deep-
translator tool and the Google Translator engine. Post-
translation, tender texts were processed using natural
language processing (NLP) techniques. These included
the removal of stop words and special characters, part-of-
speech (POS) tagging to retain key grammatical categories,
lowercase conversion, lemmatization, and replacement of

numerical measures with a <NUM> tag.
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For ease of comparison, all monetary amounts were converted
to U.S. dollars and adjusted for price level differences using
the purchasing power parities (PPP) index.

Classification

Classifying Al-related contracts and grants was achieved
using full-text search with regular expressions. An
Al dictionary was compiled by generating Al-related
expressions and incorporating “core” expressions from the
Yamashita et al. (2021) vocabulary. Additionally, a Word2Vec

model expanded the dictionary with cosine-similar terms

for each baseline expression that were manually reviewed
and included in the final vocabulary. This process provided
keywords and co-occurrence patterns crucial for identifying
Al content.

The classification followed a multistep approach. Initially,
regular expression (regex) matching identified Al terms
within contract and grant awards. These documents were
then categorized as either “non Al-related” or “Al-related.” To
validate Al-related matches, BERTopic model and pretrained
DeBERTA transformer were employed to assess probability
scores for specific Al-related topics. Awards with relevance
scores below 20% underwent manual review, while those
with higher scores were confirmed as Al-related. To ensure
additional accuracy, all high-value tenders were also manually

reviewed.



https://ted.europa.eu/en/
https://www.gov.uk/find-tender
https://www.gov.uk/find-tender
https://www.gov.uk/contracts-finder
https://www.data.gov.uk/dataset/97c75a0c-dd9b-42f9-969c-5e667d8c80f1/contracts-finder-archive-2011-to-2015
https://www.publiccontractsscotland.gov.uk/search/search_mainpage.aspx
https://www.sell2wales.gov.wales
https://www.open-contracting.org/
https://kingfisher-collect.readthedocs.io/en/latest/
https://kingfisher-collect.readthedocs.io/en/latest/
https://www.usaspending.gov
https://www.gao.gov/products/gao-24-106214
https://www.gao.gov/products/gao-24-106214
https://pypi.org/project/deep-translator/
https://pypi.org/project/deep-translator/
https://ec.europa.eu/eurostat/web/purchasing-power-parities/database
https://www.oecd.org/en/publications/measuring-the-ai-content-of-government-funded-r-d-projects_7b43b038-en.html
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Code.org, CSTA, ECEP Alliance

State-Level Data
Appendix 2 of the State of Computer Science Education

2024 report includes a full description of the methodology
used by Code.org, CSTA, and ECEP Alliance to collect their
data. The staff at Code.org also maintains a database of the
state of American K-12 education and, in this policy primer,
provides a greater amount of detail on the state of American
K—12 education in each state.

AP Computer Science Data

The AP Computer Science data is provided to Code.org as per
an agreement the College Board maintains with Code.org. The
AP Computer Science data comes from the College Board’s

national and state summary reports.

Access to Computer Science Education

Data on access to computer science education was drawn
from Code.org, CSTA, and ECEP Alliance’s State of Computer
Science Education 2024 report.

2024 K-12 Computer Science
Landscape Teacher Landscape
Survey

For more information or access to the dataset, please contact

membership@csteachers.org.

State Standards Comparison

CSTA and the Institute for Advancing Computing Education
(IACE) published a State Standards Comparison report in

December 2024. The dataset of approximately 10,000 state-
adopted K-12 standards is available as a spreadsheet, as well
as a Python notebook that may be useful for data analysis.
Colorado and Virginia’s standards were adopted in late 2024
and are not included in this dataset.
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Global K-12 Al Education

The Raspberry Pi Computing Education Research Centre, based
in the Department of Computer Science and Technology at the
University of Cambridge, compiled this dataset, expanding on

research conducted by the Brookings Institution for its 2021
report Building Skills for Life: How to Expand and Improve

Computer Science Education Around the World. We made
one change to their dataset to clarify that CS in the United

States is available in some schools/districts and not available
everywhere as an elective course. For more information about
the methodology, please refer to their report.

IPEDS

The Integrated Postsecondary Education Data System
(IPEDS) combines annual surveys conducted by the U.S.
Department of Education’s National Center for Education
Statistics (NCES). IPEDS gathers information from every
college, university, and technical and vocational institution

that participates in federal student financial aid programs.

Completion Data

This chapter used data from the Completions survey, which
collects data on the number of students who complete a
postsecondary education program. Graduates in Al-related
fields were identified as those whose first major was either
Computerand Information Sciences, General (11.01); Computer
Programming (11.02); or Computer Science (11.07), according
to the Classification of Instructional Programs (CIP) codes.
The number of graduates in Al-related fields included in this
year’s report differs from previous years because the Al Index
used multiple CIP codes.

OECD

This chapter used data from the OECD Data Explorer,
specifically from the table “Number of enrolled students,
graduates and new entrants by field of education” The
methodology for this dataset can be found in Education at a

Glance 2024 Sources, Methodologies and Technical Notes.



https://code.org/assets/advocacy/stateofcs/2024_state_of_cs.pdf
https://code.org/assets/advocacy/stateofcs/2024_state_of_cs.pdf
https://docs.google.com/spreadsheets/d/1YtTVcpQXoZz0IchihwGOihaCNeqCz2HyLwaXYpyb2SQ/pubhtml
https://code.org/assets/advocacy/making_cs_foundational_2024.pdf
http://research.collegeboard.org/programs/ap/data
https://code.org/assets/advocacy/stateofcs/2024_state_of_cs.pdf
https://code.org/assets/advocacy/stateofcs/2024_state_of_cs.pdf
mailto:membership%40csteachers.org?subject=
https://reimaginingcs.org/Standards-Comparison
https://docs.google.com/spreadsheets/d/1briGyFqq5pKO5Rb1-Gp7WeTLsLD6GLnKPM3D3QJBDwk/edit?gid=570385718#gid=570385718
https://colab.research.google.com/drive/11INhVkdWwxX5PFMUxVhtNPcAQlrmpgLt
https://www.cde.state.co.us/apps/standards/60012,60005,60047/60012,60006,60047/60012,60007,60047/60012,60038,60047/60012,60015,60047/
https://www.doe.virginia.gov/home/showpublisheddocument/57144/638609727259600000
https://docs.google.com/spreadsheets/d/1-hWTYCcVLHBYSD4jI8ZMqaHYLsndVdySRra4g4tcnK8/edit?usp=sharing
https://www.brookings.edu/articles/building-skills-for-life-how-to-expand-and-improve-computer-science-education-around-the-world/
https://www.brookings.edu/articles/building-skills-for-life-how-to-expand-and-improve-computer-science-education-around-the-world/
https://computingeducationresearch.org/computing-education-around-the-world-data/
https://nces.ed.gov/ipeds/
https://nces.ed.gov/ipeds/
https://nces.ed.gov/ipeds/survey-components/7
https://nces.ed.gov/ipeds/cipcode/Default.aspx?y=55
http://data-explorer.oecd.org/s/19p
http://data-explorer.oecd.org/s/19p
https://www.oecd.org/en/publications/education-at-a-glance-2024-sources-methodologies-and-technical-notes_e7d20315-en.html
https://www.oecd.org/en/publications/education-at-a-glance-2024-sources-methodologies-and-technical-notes_e7d20315-en.html
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Chapter 8: Public Opinion

lpsos
For the sake of brevity, the 2025 Al Index opted not to republish the methodology used by the Ipsos survey featured in the report.
More details about the Ipsos survey’s methodology can be found in the survey itself.
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https://www.ipsos.com/sites/default/files/ct/news/documents/2024-06/Ipsos-AI-Monitor-2024-final-APAC.pdf

